[1] Almahalebi M, Charifi A, Kabbaj S. Hyperstability of a monomial functional equation. J Sci Research Reports, 2014, 3(20):2685-2693 [2] Almahalebi M, Kabbaj S. Hyperstability of a Cauchy-Jensen type functional equation. Adv Research, 2014, 2(12):1017-1025 [3] Almahalebi M, Charifi A, Kabbaj S. Hyperstability of a Cauchy functional equation. J Nonlinear Anal Opt:Theory & Applications, 2015, 6(2):127-137 [4] Almahalebi M, Park C. On the hyperstability of a functional equation in commutative groups. J Comput Anal Appl, 2016, 20:826-833 [5] Almahalebi M, Chahbi A. Hyperstability of the Jensen functional equation in ultrametric spaces. Aequat Math, 2017, 91(4):647-661 [6] Aiemsomboon L, Sintunavarat W. On generalized hyperstability of a general linear equation. Acta Math Hungar, 2016, 149(2):413-422 [7] Aiemsomboon L, Sintunavarat W. On a new type of stability of a radical quadratic functional equation using Brzdęks fixed point theorem. Acta Math Hungar, 2017, 151(1):35-36 [8] Alizadeh Z, Ghazanfari A G. On the stability of a radical cubic functional equation in quasi-β-spaces. J Fixed Point Theory Appl, 2016, 18(4):843-853 [9] Aoki T. On the stability of the linear transformation in Banach spaces. J Math Soc Japan, 1950, 2:64-66 [10] Bourgin D G. Classes of transformations and bordering transformations. Bull Amer Math Soc, 1951, 57:223-237 [11] Brzdęk J. A note on stability of additive mappings//Rassias T M, Tabor J, eds. Stability of Mappings of Hyers-Ulam Type. Palm Harbor:Hadronic Press, 1994:19-22 [12] Brzdęk J, Chudziak J, Páles Zs. A fixed point approach to stability of functional equations. Nonlinear Anal, 2011, 74:6728-6732 [13] Brzdęk J, Ciepliński K. A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal, 2011, 74:6861-6867 [14] Brzdęk J. Stability of additivity and fixed point methods. Fixed Point Theory Appl, 2013, 2013:265 [15] Brzdęk J. Hyperstability of the Cauchy equation on restricted domains. Acta Math Hungar, 2013, 141(1/2):58-67 [16] Brzdęk J, Cadăriu L, Ciepliński K. Fixed point theory and the Ulam stability. J Funct Spaces, 2014, 2014:Article ID 829419 [17] Brzdęk J, Fechner W, Moslehian M S, Sikorska J. Recent developments of the conditional stability of the homomorphism equation. Banach J Math Anal, 2015, 9:278-327 [18] Brzdęk J. Remark 3//Report of Meeting of 16th International Conference on Functional Equations and Inequalities (Będlewo, Poland, May 17-23, 2015). Ann Univ Paedagog Crac Stud Math, 2015, 14:163-202 [19] Brzdęk J. Remarks on solutions to the functional equations of the radical type. Advances in the Theory of Nonlinear Anal Appl, 2017, 1:125-135 [20] Brzdęk J, Ciepliński K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Math Sci, 2018, 38B(2):377-744 [21] Eshaghi Gordji M, Parviz M. On the HyersUlam stability of the functional equation f(2√x2 + y2=f(x) + f(y). Nonlinear Funct Anal Appl, 2009, 14:413-420 [22] Eshaghi Gordji M, Khodaei H, Ebadian A, Kim G H. Nearly radical quadratic functional equations in p-2-normed spaces. Abstr Appl Anal, 2012, 2012:Article ID 896032 [23] Gähler S. 2-metrische Räume und ihre topologische Struktur. Math Nachr, 1963, 26:115-148 [24] Gähler S. Linear 2-normiete Räumen. Math Nachr, 1964, 28:1-43 [25] Hyers D H. On the stability of the linear functional equation. Proc Natl Acad Sci USA, 1941, 27:222-224 [26] Khodaei H, Eshaghi Gordji M, Kim S S, Cho Y J. Approximation of radical functional equations related to quadratic and quartic mappings. J Math Anal Appl, 2012, 395:284-297 [27] Kim S S, Cho Y J, Eshaghi Gordji M. On the generalized Hyers-Ulam-Rassias stability problem of radical functional equations. J Inequal Appl, 2012, 2012:186 [28] Park W -G. Approximate additive mappings in 2-Banach spaces and related topics. J Math Anal Appl, 2011, 376:193-202 [29] Rassias Th M. On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc, 1978, 72:297-300 [30] Rassias Th M. Problem 16; 2. Report of the 27th international symposium on functional equations. Aequationes Math, 1990, 39:292-293 [31] Rassias Th M. On a modified Hyers-Ulam sequence. J Math Anal Appl, 1991, 158:106-113 [32] Ulam S M. Problems in Modern Mathematics. Science Edition. New York:John-Wiley & Sons Inc, 1964 |