[1] Al-Homidan S, Ansari Q H, Yao J C. Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Anal, 2008, 69:126-139 [2] Alleche B, Rădulescu V D. The Ekeland variational principle for equilibrium problems revisited and applications. Nonlinear Anal:Real World Applications, 2015, 23:17-25 [3] Aubin J P, Ekeland I. Applied Nonlinear Analysis. New York:Wiley, 1984 [4] Bednarczuk E M, Zagrodny D. Vector variational principle. Arch Math (Basel), 2009, 93:577-586 [5] Bianchi M, Kassay G, Pini R. Existence of equilibria via Ekeland's principle. J Math Anal Appl, 2005, 305:502-512 [6] Bianchi M, Kassay G, Pini R. Ekeland's principle for vector equilibrium problems. Nonlinear Anal, 2007, 66:1459-1464 [7] Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems. Math Student, 1994, 63:123-145 [8] Castellani M, Giuli M. Ekeland's principle for cyclically antimonotone equilibrium problems. Nonlinear Anal:Real World Applications, 2016, 32:213-228 [9] Chen Y, Cho Y J, Yang L. Note on the results with lower semi-continuity. Bull Korean Math Soc, 2002, 39:535-541 [10] Chen G Y, Huang X X, Yang X G. Vector Optimization:Set-Valued and Variational Analysis. Berlin:Springer-Verlag, 2005 [11] Du W S. On some nonlinear problems induced by an abstract maximal element principle. J Math Anal Appl, 2008, 347:391-399 [12] Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47:324-353 [13] Ekeland I. Nonconvex minimization problems. Bull Amer Math Soc, 1979, 1:443-474 [14] Finet C, Quarta L, Troestler C. Vector-valued variational principles. Nonlinear Anal, 2003, 52:197-218 [15] Flores-Bazán F, Gutiérrez C, Novo V. A Brézis-Browder principle on partially ordered spaces and related ordering theorems. J Math Anal Appl, 2011, 375:245-260 [16] Floret K. Weakly Compact Sets. Berlin:Springer-Verlag, 1980 [17] Gong X. Ekeland's principle for set-valued vector equilibrium problems. Acta Math Sci, 2014, 34B:1179-1192 [18] Göpfert A, Riahi H, Tammer C, Zălinescu C. Variational Methods in Partially Ordered Spaces. New York:Springer-Verlag, 2003 [19] Göpfert A, Tammer C, Zalinescu C. On the vectorial Ekeland's variational principle and minimal point theorems in product spaces. Nonlinear Anal, 2000, 39:909-922 [20] Hamel A H. Equivalents to Ekeland's variational principle in uniform spaces. Nonlinear Anal, 2005, 62:913-924 [21] Horváth J. Topological Vector Spaces and Distributions. Vol. 1. Reading, MA:Addison-Wesley, 1966 [22] Kassay G. On equilibrium problems//Chinchuluun A, Padalos P M, Enkhbat R, Tseveendorj I, eds. Optimization and optimal control:Theory and Applications. Optimization and its Applications, vol 39. Springer, 2010:55-83 [23] Kelley J L, Namioka I, et al. Linear Topological Spaces. Princeton:Van Nostrand, 1963 [24] Köthe G. Topological Vector Spaces I. Berlin:Springer-Verlag, 1969 [25] Lin L J, Du W S. Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J Math Anal Appl, 2006, 323:360-370 [26] Németh A B. A nonconvex vector minimization problem. Nonlinear Anal, 1986, 10:669-678 [27] Oettli W, Théra M. Equivalents of Ekeland's principle. Bull Austral Math Soc, 1993, 48:385-392 [28] Qiu J H. Infra-Mackey spaces, weak barrelledness and barrelledness. J Math Anal Appl, 2004, 292:459-469 [29] Qiu J H. A pre-order principle and set-valued Ekeland variational principle. J Math Anal Appl, 2014, 419:904-937 [30] Qiu J H. An equilibrium version of vectorial Ekeland variational principle and its applications to equilibrium problems. Nonlinear Anal:Real World Applications, 2016, 27:26-42 [31] Qiu J H. An equilibrium version of set-valued Ekeland variational principle and its applications to set-valued vector equilibrium problems. Acta Math Sinica (Engl Ser), 2017, 33:210-234 [32] Qiu J H. Vectorial Ekeland variational principle for systems of equilibrium problems and its applications. Sci China Math, 2017, 60:1259-1280 [33] Wilansky A. Modern Methods in Topological Vector Spaces. New York:McGraw-Hill, 1978 [34] Zeng J, Li S J. An Ekeland's variational principle for set-valued mappings. J Comput Appl Math, 2009, 230:477-484 |