[1] Achtziger W, Kanzow C. Mathematical programs with vanishing constraints:optimality conditions and constraint qualifications. Math Prog, 2008, 114(1):69-99 [2] Antczak T. A new approach to multiobjective programming with a modified objective function. J Global Optim, 2003, 27(4):485-495 [3] Antczak T. An η-approximation method in nonlinear vector optimization. Nonlinear Anal, 2005, 63(2):225-236 [4] Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems. New York:Springer, 2003 [5] Hanson M A. On sufficiency of the Kuhn-Tucker conditions. J Math Anal Appl, 1981, 80(2):545-550 [6] Hoheisel T, Kanzow C. First and second-order optimality conditions for mathematical programs with vanishing constraints. Appl Math, 2007, 52(6):495-514 [7] Hoheisel T, Kanzow C. Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J Math Anal Appl, 2008, 337(1):292-310 [8] Hoheisel T, Kanzow C. On the Abadie and Guignard constraint qualification for mathematical programmes with vanishing constraints. Optimization, 2009, 58(4):431-448 [9] Luo Z Q, Pang J S, Ralph D. Mathematical Programs with Equilibrium Constraints. Cambridge:Cambridge University Press, 1996 [10] Mishra S K, Singh V, Laha V, Mohapatra R N. On Constraint qualifications for multiobjective optimization problems with vanishing constraints//Optimization Methods, Theory and Applications. Berlin, Heidelberg:Springer, 2015:95-135 [11] Outrarata J V, Kocvara M, Zowe J. Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Dordrecht:Kluwer Academic Publishers, 1998 [12] Pareto V. Cours de Economie Politique. Switzerland:Rouge, Lausanne, 1896 [13] Tanino T, Sawaragi Y. Duality theory in multiobjective programming. J Optim Theory Appl, 1979, 27(4):509-529 |