[1] Moudafi A, Thera M. Proximal and dynamical approaches to equilibrium problems//Lecture Notes in Economics and Mathematics Systems. Vol 477. Springer, 1999:187-201 [2] Barbagallo A. Existence and regularity of solutions to nonlinear degenerate evolutionary variational inequalities with applications to dynamic network equilibrium problems. Appl Math Comput, 2009, 208:1-13 [3] Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems. Mathematics Student, 1994, 63(1/4):123-145 [4] Stampacchia G. Formes bilineaires coercitives sur les ensembles convexes. CR Acad Sci Paris, 1964, 258:4413-4416 [5] Cioranescu I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Dordrecht, The Netherlands:Kluwer Academic Publishers, 1990 [6] Fan K. A minimax inequality and applications//Shisha O, ed. Inequality Ⅲ. New York:Academic Press, 1972:103-113 [7] Ceng L C, Yao J C. A hybrid iterative scheme for mixed equilibriun problems and fixed point problem. J Comput Appl Math, 2008, 214:186-201 [8] Ceng L C, Guu S M, Hu H Y, Yao J C. Hybrid shrinking projection method for a generalized equilibrium problem, a maximal monotone operator and a countable family of relatively nonexpansive mappings. Comput Math Appl, 2011, 61:2468-2479 [9] Feng Q, Su Y, Yan F. Modified hybrid block iterative algorithm for uniformly quasi-φ-nonexpansive mappings. Abs Appl Anal, 2012, 2012, doi:10.1155/2012/215261 [10] Plubtieng S, Ungchittrakool K. Hybrid iterative method for convex feasibility problems and fixed point problems of relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl, 2008, 19:Article ID 583082, doi:10.1155/2008/58308 [11] Chang S S, Wang L, Tang Y K, Zhao Y H, Ma Z L. Strong convergence theorems of nonlinear operator equations for countable family of multi-valued total quasi-φ-asymptotically nonexpansive mappings with applications. Fixed Point Theory Appl, 2012, 2012:69 [12] Chang S S, Joseph Lee H W, Chan C K, Zhang W B. A modified halpern-type iteration algorithm for totally quasi-φ-asymptotically nonexpansive mappings with applications. Appl Maths Compu, 2012, 218:6489-6497 [13] Qian S. Strong convergence theorem for totally quasi-φ-asymptotically nonexpansive multi-valued mappings under relaxed conditions. Fixed Point Theory Appl, 2015, 2015:213, doi:10.1186/s13663-015-0452-9 [14] Zhang S S. Generalized mixed equilibrium problem in Banach spaces. Appl Math Mech, 2009, 30(9):1105-1112 [15] Homaeipour S, Razani A. Weak and strong convergence theorems for relatively nonexpansive multi-valued mappings in Banach spaces. Fixed Point Theory Appl, 2011, 2011:73, doi:10.1186/1687-1812-2011-73 [16] Takahashi S, Takahashi W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal, 2008, 69:1025-1033 [17] Dafermos S, Nagurney A. A network formulation of market equilibrium problems and variational inequalities. Oper Res Lett, 1984, 3:247-250 [18] Su T V. Second-order optimality conditions for vector equilibrium problems. J Nonlinear Funct Anal, 2015, 2015:31 pages [19] Cholamjiak W, Cholamjiak P, Suantai S. Convergence of iterative schemes for solving fixed point problems for multi-valued nonself mappings and equilibrium problems. J Nonlinear Sci Appl, 2015, 8:1245-1256 [20] Deng W Q. A relaxed hybrid shrinking iteration approach to solving generalized mixed equilibrium problems for totally quasi-φ-asymptotically nonexpansive mappings. Fixed Point Theory Appl, 2014, 2014:63 [21] Qin X, Cho S Y, Kang S M. Strong convergence of shrinking projection methods for quasi-nonexpansive mappings and equilibrium problems. J Comput Appl Math, 2010, 234:750-760 [22] Cho Y J, Qin X, Kang S M. Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems. Nonlinear Anal, 2009, 71:4203-4214 [23] Haugazeau Y. Sur les Inequations Variationnelles et la Minimization de Fonctionnelles Convexes[D]. Paris:University of Paris, 1968 [24] Alber Ya. Metric and generalized projection operators in Banach spaces:properties and applications//Kartsatos A G, ed. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York:Marcel Dekker, 1996:15-50 [25] Alber Ya, Ryazantseva I. Nonlinear Ill Posed Problems of Monotone Type. London, UK:Springer, 2006 [26] Wang Z M, Su Y F, Wang D X, Dong Y C. A modified Halpern-type iteration algorithm for a family of hemi-relative nonexpansive mappings and systems of equilibrium problems in Banach spaces. J Comput Appl Math, 2011, 235:2364-2371 [27] Wang Z M, Zhang X. Shrinking projection methods for systems of mixed variational inequalities of Browder type, systems of mixed equilibrium problems and fixed point problems. J Non Funct Anal, 2014, 2014:Article ID 15 [28] Qin X, Cho X Y. Convergence analysis of a monotone projection algorithm in reflexive Banach spaces. Acta Math Sci, 2017, 37B(2):488-502 [29] Zhao F, Yang L. Hybrid projection methods for equilibrium problems and fixed point problems of infinite family of multivalued asymptotically nonexpansive mappings. J Nonlinear Funct Anal, 2016, 2016:Article ID 22 [30] Zhang S, Wang L, Zhao Y. Multi-valued totally quasi-φ-asymptotically nonexpansive semi-groups and strong convergence theorems in Banach spaces. Acta Math Sci, 2013, 33B(2):589-599 [31] Su Y, Shang M, Wang D. Strong convergence of monotone CQ algorithm for relatively nonexpansive mappings. Banach J Math Anal, 2008, 2(1):1-10 |