[1] Agarwal A K, Andrews G, Bressoud D. The Bailey lattice. J Indian Math Soc, 1987, 51:57-73 [2] Andrews G E. Multiple series Rogers-Ramanujan type identities. Pacific J Math, 1984, 114:267-283 [3] Andrews G E. Umbral calculus, Bailey chains, and pentagonal number theorems. J Comb Theory, Ser A, 2000, 91(1/2):464-475 [4] Andrews G E. Bailey's transform, lemma, chains and tree//Special Functions 2000:Current Perspective and Future Directions, NATO Sci Ser. Ⅱ Math Phys Chem, Tempe, AZ, vol 30. Dordrecht:Kluwer Acad Publ, 2001:1-22 [5] Andrews G E, Berkovich A. The WP-Bailey tree and its implications. J London Math Soc, 2002, 66(2):529-549 [6] Andrews G E, Schilling A, Warnaar S O. An A2 Bailey lemma and Rogers-Ramanujan-type identities. J Amer Math Soc, 1999, 12(3):677-702 [7] Bailey W N. Identities of the Rogers-Ramanujan type. Proc London Math Soc, 1949, 50(2):1-10 [8] Bartlett N, Warnaar S O. Hall-Littewood polynomials and characters of affine Lie algebras. Adv Math, 2015, 285:1066-1105 [9] Berkovich A, Warnaar S O. Positivity preserving transformations for q-binomial coefficients. Trans Amer Math Soc, 2005, 357:2291-2351 [10] Bhatnagar G. Dn basic hypergeometric series. Ramanujan J, 1999, 3:175-203 [11] Bhatnagar G, Milne S C. Generalized bibasic hypergeometric series, and their U(n) extensions. Adv Math, 1997, 131:188-252 [12] Bhatnagar G, Schlosser M J. Cn and Dn very-well-poised 10φ9 transformations. Constr Approx, 1998, 14:531-567 [13] Bhatnagar G, Schlosser M J. Elliptic well-poised Bailey transforms and lemmas on root system. arXiv:1704.00020 [14] Bressoud D M. Some identities for terminating q-series. Math Proc Cambridge Philos Soc, 1981, 89(2):211-223 [15] Bressoud D M. The Bailey lattice:an introduction//Ramanujan revisited (Urbana-Champaign, Ⅲ, 1987), Boston, MA:Acdemic Press, 1988:57-67 [16] Bressoud D M, Ismail M E H, Stanton D. Change of base in Bailey pairs. Ramanujan J, 2000, 4:435-453 [17] Coskun H. A BCn Bailey Lemma and Generalizations of Rogers-Ramanujan Identities[D]. Texas A&M University, 2003 [18] Coskun H. An elliptic BCn Bailey lemma, multiple Rogers-Ramanujan identities and Euler's pentagonal number theorems. Trans Amer Math Soc, 2008, 360(10):5397-5433 [19] Coskun H. Multilateral basic hypergeometric summation identities and hyperoctahedral group symmetries. Adv Appl Disc Math, 2010, 5(2):145-157 [20] Coskun H. A multilateral Bailey lemma and multiple Andrews-Gordon identities. Ramanujan J, 2011, 26(2):229-250 [21] Coskun H, Gustafson R A. The well-poised Macdonald functions Wλ and Jackson coefficients ωλ on BCn//Jack, Hall-Littlewood and Macdonald Polynomials. ICMS, AMS Contemporary 417. Amer Math Soc, 2006:127-155 [22] Gasper G, Rahman M. Basic Hypergeometric Series. Cambridge:Cambridge University Press, 1990 [23] Jouhet F. Shifted versions of the Bailey and well-poised Bailey lemmas. Ramanujan J, 2010, 23:315-333 [24] McLaughlin J, Sills A V, Zimmer P. Lifting Bailey pairs to WP-Bailey pairs. Discrete Math, 2009, 309:5077-5091 [25] McLaughlin J, Zimmer P. Some identities between basic hypergeometric series deriving from a new Baileytype transformation. J Math Anal Appl, 2008, 345:670-677 [26] McLaughlin J, Zimmer P. Some implications of the WP-Bailey tree. Adv Appl Math, 2009, 43:162-175 [27] McLaughlin J, Zimmer P. General WP-Bailey chains. Ramanujan J, 2010, 22(1):11-31 [28] McLaughlin J, Zimmer P. A reciprocity relation for WP-Bailey pairs. Ramanujan J, 2012, 28:155-173 [29] Lilly G M, Milne S C. The Cl Bailey transform and Bailey lemma. Constr Approx, 1993, 9:473-500 [30] Liu Q, Ma X. On a characteristic equation of well-poised Bailey chains. Ramanujan J, 2009, 18:351-370 [31] Lovejoy J. A Bailey lattice. Proc Amer Math Soc, 2004, 132(5):1507-1516 [32] Milne S C. Basic hypergeometric series very well-poised in U(n). J Math Anal Appl, 1987, 122:223-256 [33] Milne S C. Balanced 3φ2 summation theorems for U(n) basic hypergeometric series. Adv Math, 1997, 131:93-187 [34] Milne S C, Lilly G M. The Al and Cl Bailey transform and lemma. Bull Amer Math Soc (NS), 1992, 26:258-263 [35] Milne S C, Lilly G M. Consequences of the Al and Cl Bailey transform and Bailey lemma. Discrete Math, 1995, 139:319-346 [36] Rains E. BCn-symmetric abelian functions. Duke Math J, 2006, 135(1):99-180 [37] Rosengren H. Elliptic hypergeometric series on root systems. Adv Math, 2004, 181:417-447 [38] Rowell M J. A new general conjugate Bailey pair. Pacific J Math, 2008, 238(2):367-385 [39] Schilling A, Warnaar S O. A higher level Bailey lemma:proof and applications. Ramanujan J, 1998, 2:327-349 [40] Schlosser M J. Multidimensional matrix inversions and Ar and Dr basic hypergeometric series. Ramanujan J, 1997, 1:243-274 [41] Schlosser M J. Multilateral inversion of Ar, Cr and Dr basic hypergeometric series. Ann Comb, 2009, 13:341-363 [42] Singh U B. A note on a transformation of Bailey. Quart J Math Oxford Ser (2), (1994, 45(177):111-116 [43] Slater L J. Generalized Hypergeometric Functions. Cambridge:Cambridge University Press, 1966 [44] Spiridonov V P. An elliptic incarnation of the Bailey chain. Internat Math Res Notices, 2002, 37:1945-1977 [45] Spiridonov V P. A Bailey tree for integrals. Theor Math Phys, 2004, 139:536-541 [46] Warnaar S O. 50 years of Bailey's lemma//Algebraic Combinatorics and Applications (Gößweinstein, 1999). Berlin:Springer, 2001:333-347 [47] Warnaar S O. Summation and transformation formulas for elliptic hypergeometric series. Constr Approx, 2002, 18:479-502 [48] Warnaar S O. Extensions of the well-poised and elliptic well-poised Bailey lemma. Indag Math (NS), 2003, 14(3/4):571-588 [49] Warnaar S O. The Bailey lemma and Kostka polynomials. J Algebraic Combin, 2004, 20(2):131-171 [50] Zhang Z Z. Operator identities and several U(n +1) generalizations of the Kalnins-Miller transformations. J Math Anal Appl, 2006, 324:1152-1167 [51] Zhang Z Z, Liu Q Y. U(n +1) WP-Bailey tree. Ramanujan J, 2016, 40:447-462 [52] Zhang Z Z, Wu Y. A U(n +1) Bailey lattice. J Math Anal Appl, 2015, 426:747-764 |