[1] Gerbeau J F, Bris C L, Lelièvre T. Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford:Oxford University Press, 2006 [2] Basson A, Gérard-Varet D. Wall laws for fluid flows at a boundary with random roughness. Comm Pure Appl Math, 2008, 61(7):941-987 [3] Davidson P A. An Introduction to Magnetohydrodynamics. Cambridge:Cambridge University Press, 2001 [4] Duvaut G, Lions J L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch Ration Mech Anal, 1972, 46(4):241-279 [5] Gérard-Varet D, Masmoudi N. Relevance of the slip condition for fluid flows near an irregular boundary. Comm Math Phys, 2010, 295(1):99-137 [6] Danchin R. The inviscid limit for density-dependent incompressible fluids. Ann Fac Sci Toulouse Math, 2006, 15(4):637-688 [7] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford:Oxford University Press, 1961 [8] Feireisl E, Novotný A, Petzeltová H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3(4):358-392 [9] Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford:Oxford University Press, 2004 [10] Feireisl E, Novotný A. Singular Limits in Thermodynamics of Viscous Fluids. Basel:Birkhäuser Verlag, 2009 [11] Ferreira L C F, Villamizar-Roa E J. Exponentially-stable steady flow and asymptotic behavior for the magnetohydrodynamic equations. Commun Math Sci, 2011, 9(2):499-516 [12] He C, Xin Z P. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J Funct Anal, 2005, 227(1):113-152 [13] He F Y, Fan J S, Zhou Y. Local existence and blow-up criterion of the ideal density-dependent flows. Bound Value Probl, 2016, 101:13 [14] Michel S, Roger T. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36(5):635-664 [15] Meng Y, Wang Y G. A uniform estimate for the incompressible magneto-hydrodynamics equations with a slip boundary condition. Quart Appl Math, 2016, 74(1):27-48 [16] Díaz J I, Lerena M B. On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics. Math Models Methods Appl Sci, 2002, 12(10):1401-1419 [17] Kulikovskiy A G, Lyubimov G A. Magnetohydrodynamics. Reading, MA:Addison-Wesley, 1965 [18] Kang K, Kim J. Regularity criteria of the magnetohydrodynamic equations in bounded domains or a half space. J Diff Eqns, 2012, 253(2):764-794 [19] Kato T. Quasi-linear equations of evolution, with applications to partial differential equations. Lecture Notes in Math, 1975, 448:25-70 [20] Landau L D, Lifchitz E M. Electrodynamics of Continuous Media. 2nd ed. New York:Pergamon, 1984 [21] Li X L, Wang D H. Global strong solution to the three-dimensional density-dependent incompressible magnetohydrodynamic flows. J Diff Eqns, 2011, 251(6):1580-1615 [22] Li X L, Wang D H. Global solutions to the incompressible magnetohydrodynamic equations. Commun Pure Appl Anal, 2012, 11(2):763-783 [23] Ferreira L C F, Planas G, Villamizar-Roa E J. On the nonhomogeneous Navier-Stokes system with Navier friction boundary conditions. SIAM J Math Anal, 2013, 45(4):2576-2595 [24] Li X J, Cai X J. The global L2 stability of solutions to three dimensional mhd equations. Acta Math Sci, 2013, 33B(1):247-267 [25] Li F C, Zhang Z P. Zero kinematic viscosity-magnetic diffusion limit of the incompressible viscous magnetohydrodynamic equations with Navier boundary conditions. ArXiv:1606.05038 [26] Navier C L M H. Mémoire sur les lois de l'équilibre et du mouvement des corps élastiques. Mem Acad R Sci Inst France, 1827, 6:369 [27] Freidberg J P. Ideal Magnetohydrodynamics. New York, London:Plenum Press, 1987 [28] Itoh S. On the vanishing viscosity in the Cauchy problem for the equations of a nonhomogeneous incompressible fluid. Glasgow Math J, 1994, 36(1):123-129 [29] Simon J. Nonhomogeneous viscous incompressible fluids:existence of velocity, density, and pressure. SIAM J Math Anal, 1990, 21(5):1093-1117 [30] Simon J. Écoulement d'un fluide non homogène avec une densité initiale s'annulant (French). C R Acad Sci Paris Sér A-B, 1978, 287(15):A1009-A1012 [31] Itoh S, Tani A. Solvability of nonstationary problems for nonhomogeneous incompressible fluids and the convergence with vanishing viscosity. Tokyo J Math, 1999, 22(1):17-42 [32] Schonbek M E, Schonbek T P, Süli E. Large-time behaviour of solutions to the magneto-hydrodynamics equations. Math Ann, 1996, 304:717-759 [33] Wang Y, Xin Z P, Yong Y. Uniform regularity and vanishing viscosity limit for the compressible NavierStokes with general Navier-slip boundary conditions in three-dimensional domains. SIAM J Math Anal, 2015, 47(6):4123-4191 [34] Xiao Y L, Xin Z P. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60(7):1027-1055 [35] Xiao Y L, Xin Z P, Wu J H. Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition. J Funct Anal, 2009, 257(11):3375-3394 [36] Zhang J W. The inviscid and non-resistive limit in the Cauchy problem for 3-D nonhomogeneous incompressible magneto-hydrodynamics. Acta Math Sci, 2011, 31B(3):882-896 |