数学物理学报(英文版) ›› 2018, Vol. 38 ›› Issue (6): 1637-1654.

• 论文 •    下一篇

NONLINEAR SEMIGROUP APPROACH TO TRANSPORT EQUATIONS WITH DELAYED NEUTRONS

Abdul-Majeed AL-IZERI, Khalid LATRACH   

  1. Département de Mathématiques, Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France
  • 收稿日期:2017-03-07 修回日期:2017-11-02 出版日期:2018-12-25 发布日期:2018-12-28
  • 通讯作者: Khalid LATRACH E-mail:khalid.latrach@uca.fr
  • 作者简介:Abdul-Majeed AL-IZERI,E-mail:Abdul-Majeed.Al-izeri@math.univ-bpclermont.fr

NONLINEAR SEMIGROUP APPROACH TO TRANSPORT EQUATIONS WITH DELAYED NEUTRONS

Abdul-Majeed AL-IZERI, Khalid LATRACH   

  1. Département de Mathématiques, Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France
  • Received:2017-03-07 Revised:2017-11-02 Online:2018-12-25 Published:2018-12-28
  • Contact: Khalid LATRACH E-mail:khalid.latrach@uca.fr

摘要: This paper deal with a nonlinear transport equation with delayed neutron and general boundary conditions. We establish, via the nonlinear semigroups approach, the existence and uniqueness of the mild solution, weak solution, strong solution and local solution on Lp-spaces (1 ≤ p<+∞). Local and non local evolution problems are discussed.

关键词: transport equation with delayed neutrons, general boundary conditions, quasi-accretive operators, mild solution, strong solution, local and global solutions

Abstract: This paper deal with a nonlinear transport equation with delayed neutron and general boundary conditions. We establish, via the nonlinear semigroups approach, the existence and uniqueness of the mild solution, weak solution, strong solution and local solution on Lp-spaces (1 ≤ p<+∞). Local and non local evolution problems are discussed.

Key words: transport equation with delayed neutrons, general boundary conditions, quasi-accretive operators, mild solution, strong solution, local and global solutions