[1] Buckmaster T. Onsager's conjecture almost everywhere in time. Commun Math Phys, 2015, 3331175-1198 [2] Buckmaster T, De Lellis C, Isett P, Székelyhidi L Jr. Anomalous dissipation for 1/5-Hölder Euler flows. Ann Math, 2015, 182:127-172 [3] Buckmaster T, De Lellis C, Székelyhidi L Jr. Transporting microsructure and dissipative Euler flows. arXiv:1302.2825, 2013 [4] Buckmaster T, De Lellis C, Székelyhidi L Jr. Dissipative Euler flows with Onsager-critical spatial regularity. Common Pure Appl Math, 2016, 69(9):1613-1670 [5] Buckmaster T, De Lellis C, Székelyhidi L Jr, Vicol V. Onsager's conjecture for admissible weak solution. To appear in Comm Pure Appl Math [6] Cheskidov A, Constantin P, Friedlander S, Shvydkoy R. Energy conservation and Onsager's conjecture for the Euler equations. Nonlinearity, 2008, 21(6):1233-1252 [7] Choffrut A. H-principles for the incompressible Euler equations. Arch Rational Mech Anal, 2013, 210:133-163 [8] Conti S, De Lellis C, Szekelyhidi L Jr. H-principle and rigidity for C1,α isometric embeddings//Nonlinear Partial Differential Equations. vol 7 of Abel Symposia. Springer, 2012:83-116 [9] Constantin P, E W Titi E S. Onsager's conjecture on the energy conservation for solutions of Euler's equation. Comm Math Phys, 1994, 165(1):207-209 [10] Daneri S. Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations. Commun Math Phy, 2014, 329:745-786 [11] Daneri S, Székelyhidi L Jr. Non-uniqueness and h-Principle for Hölder-Continuous Weak Solutions of the Euler Equations. Arch Rational Mech Anal, 2017, 224(2):371-514 [12] De Lellis C, Székelyhidi L Jr. The Euler equation as a differential inclusion. Ann Math, 2009, 170(3):1417-1436 [13] De Lellis C, Székelyhidi L Jr. On admissibility criteria for weak solutions of the Euler equations. Arch Ration Mech Anal, 2010, 195(1):225-260 [14] De Lellis C, Székelyhidi L Jr. The h-principle and the equations of fluid dynamics. Bull Amer Math Soc, 2012, 49(3):347-375 [15] De Lellis C, Székelyhidi L Jr. Dissipative continuous Euler flows. Invent Math, 2013, 193(2):377-407 [16] De Lellis C, Székelyhidi L Jr. Dissipative Euler flows and Onsager's conjecture. J Eur Math Soc, 2014, 16(7):1467-1505 [17] Duchon J, Raoul R. Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity, 2000, 13:249-255 [18] Isett P, Oh S-J. A heat flow approach to Onsager's conjecture for the Euler equations on manifolds. Trans Amer Math Soc, 2016, 368(9):6519-6537 [19] Isett P, Oh S-J. On nonperiodic Euler flows with Hölder regularity. Arch Rational Mech Anal, 2016, 221:725-804 [20] Isett P. Hölder continuous Euler flows in three dimensions with compact support in time. arXiv:1211.4065, 2012 [21] Isett P. A proof of Onsager's conjecture. To appear in Ann Math [22] Isett P, Vicol V. Hölder continuous solutions of active scalar equations. Ann PDE, 2015, 1:2, DOI:10.1007/s40818-015-0002-0 [23] Majda A. Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, Vol 9. AMS/CIMS, 2003 [24] Nash J. C1 isometric embeddings. Ann Math, 1954, 60:383-396 [25] Pedlosky J. Geophysical Fluid Dynamics. New York:Springer, 1987 [26] Scheffer V. An inviscid flow with compact support in space-time. J Geom Anal, 1993:343-401 [27] Shnirelman A. Weak solution with decreasing energy of incompressible Euler equations. Commun Math Phys, 2000, 210:541-603 [28] Shnirelman A. On the nonuniqueness of weak solution of Euler equation. Comm Pure Appl Math, 1997, 50(12):1261-1286 [29] Shvydkoy R. Lectures on the Onsager conjecture. Dis Con Dyn Sys, 2010, 3(3):473-496 [30] Tao T, Zhang L. On the continuous periodic weak solution of Boussinesq equation. SIAM J Math Anal, 2018, 50(1):1120-1162 [31] Tao T, Zhang L. Hölder continuous solutions of boussinesq equation with compact support. J Funct Anal, 2017, 272(10):4334-4402 [32] Tao T, Zhang L. Hölder continuous periodic solution of Boussinesq equation with partial viscosity. Calc Var Partial Differ Equation, 2018, 57(2):1-55 |