[1] Babenko A G, Dolmatova N V, Kryakin Y V. Jackson's exact inequality with a special modulus of continuity. Trudy Inst Mat i Mekh UrO RAN, 2012, 18(4):51-67(in Russian)
[2] Babenko A G, Kryakin Y V, Staszak P T. Special moduli of continuity and the constant in the JacksonStechkin theorem. Constr Approx, 2013, 38:339-364
[3] Boman J, Shapiro H S. Comparison theorems for a generalized modulus of continuity. Ark Mat, 1971, 9:91-116
[4] Boman J. Equivalence of generalized moduli of continuity. Ark Mat, 1980, 18:73-100
[5] Cramér H. Mathematical Methods of Statistics. Princeton University Press, 1946
[6] DeVore R A, Lorentz G G. Constructive Approximation. Fundamental Principles of Mathematical Sciences 303. Berlin:Springer-Verlag, 1993
[7] Ditzian Z, Ivanov K G. Strong converse inequalities. J d'Anal Math, 1993, 61:61-111
[8] Favard J. Sur les meilleurs procedes d'approximation de certaies clasess de fonctions par des polynomes trigonometriques. Bul Sci Math, 1937, 61:209-224, 243-256
[9] Foucart S, Kryakin Y, Shadrin A. On the exact constant in Jackson-Stechkin inequality for the uniform metric. Constr Approx, 2009, 29:157-179
[10] Pichugov S A. Exact constanst in the Jackson inequality with modulus of smoothness for uniform approximation of a smooth function. Mat Zametki, 2013, 93(6):932-938(in Russian), Mathematical Notes, 2013, 93(6):917-922
[11] Shapiro H S. A Tauberian theorem related to approximation theory. Acta Math, 1968, 120:279-292
[12] Steklov V A. Fundamental Problems of Mathematical Physics. Moscow:Nauka, 1983(in Russian)
[13] Stekloff W. Sur les problemes de représentation des fonctions a l'aide de polynomes, du calcul approché des intégrales définies, du développement des fonctions en séries infinies suivant les polynomes et de l'interpolation, considérés au point de vue des idées de Tchebycheff. Toronto:Proceeding of ICM, 1924:631-640
[14] Trigub R M. Fourier multipliers and the K-functionals from the spaces of smooth functions. Ukr Mat Visnik, 2005, 2(2):236-280(in Russian) |