[1] Adler R, Konheim A, McAndrew M. Topological entropy. Trans Amer Math Soc, 1965, 114:309-319
[2] Blanchard F, Glasner E, Kolyada S. On Li-Yorke pairs. J Reine Angew Math, 2002, 547:51-68
[3] Blanchard F, Maass A. Dynamical behaviour of Coven's aperiodic cellular automata. Theoret Comput Sci, 1996, 163:291-302
[4] Blanchard F, Tisseur P. Some properties of cellular automata with equicontinous points. Ann Inst Henri Poincaré, 2000, 36:569-582
[5] Coven E M. Topological entropy of block maps. Proc Amer Math Soc, 1980, 78:590-594
[6] Coven E M, Hedlund G A. Periods of some nonlinear shift registers. J Combina Theory, 1979, 27A:186-197
[7] Codenotti B, Margara L. Transitive cellular automata are sensitive. Amer Math Monthly, 1996, 103:58-62
[8] Delorme M, Formenti E, Mazoyer J. Open problem on cellular automata. Technical report RR-2000-25. É cole Normale Supérieure de Lyon, 2000
[9] Denker M, Grillenberger C, Sigmund K. Ergodic Theory on Compact Space. Berlin:Springer-Verlag, 1976
[10] D'amico M, Manzhi G, Margara L. On computing the entropy of cellular automata. Theoret Comput Sci, 2003, 290:1629-1646
[11] Fine N J, Wilf H S. Uniqueness theorem for periodic functions. Proc Amer Math Soc, 1965, 16:109-114
[12] Goodman T N T. Relating topological entropy and measure entropy. Bull London Math Soc, 1971, 3:176-180
[13] Gardner M. Mathematical Games-The fantastic combinations of John Conway's new solitaire game "life". Sci Am, 1970, 223:120-123
[14] Guibas L J, Odlyzko A M. Periods in strings. J Combin Theory, 1981, 30A:19-42
[15] Hedlund G A. Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory, 1969, 3:320-375
[16] Hurd L P, Kari J, Culik K. The topological entropy of cellular automata is uncomputable. Ergodic Theory Dynam Systems, 1992, 12:255-265
[17] Kitchens B. Symbolic Dynamical, One-sided, Two-sided and Countable State Markov Shifts. Berlin:Springer, 1998
[18] K?rka P. Topological and Symbolic Dynamics. Cours Spécialisés-Collection SMF, 2003
[19] K?rka P. Languages, equicontinuity and attractors in cellular automata. Ergodic Theory Dynam Systems, 1997, 17(2):417-433
[20] Lothaire M. Algebraic Combinatorics on Words. Cambridge:Cambridge University Press, 2002
[21] Lind D, Marcus B. An Introduction to Symbolic Dynamics and Coding. Cambridge:Cambridge University Press, 1995
[22] Moothathu T K S. Surjective cellular automata with zero entropy are almost one-to-one. Chaos Solitons Fractals, 2011, 44:415-417
[23] von Neumann J. Theory of Self-reproducing Automata. Urbana:University of Illinios, 1966
[24] Tisseur P. Cellular automata and Lyapunov exponents. Nonlinearity, 2000, 13:1547-1560
[25] Walters P. An Introduce to Ergodic Theory. New York:Springer-Verlag, 1982
[26] Wolfram S. Computation theory of cellular automata. Comm Math Phys, 1984, 96:15-57
[27] Wolfram S. Theory and Application of Cellular Automata. Singapore:World Scientific, 1986 |