数学物理学报(英文版) ›› 2016, Vol. 36 ›› Issue (2): 579-592.doi: 10.1016/S0252-9602(16)30022-4

• 论文 • 上一篇    下一篇

TOPOLOGICAL ENTROPY OF PERIODIC COVEN CELLULAR AUTOMATA

刘卫斌, 马际华   

  1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
  • 收稿日期:2014-11-20 修回日期:2015-06-02 出版日期:2016-04-25 发布日期:2016-04-25
  • 作者简介:Weibin LIU,E-mail:weibinliu@whu.edu.cn;Jihua MA,E-mail:jhma@whu.edu.cn
  • 基金资助:

    The first author is supported by the Fundamental Research Funds for the Central Universities (2012201020204), and the second author is supported by NSFC (11171128, 11271148).

TOPOLOGICAL ENTROPY OF PERIODIC COVEN CELLULAR AUTOMATA

Weibin LIU, Jihua MA   

  1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
  • Received:2014-11-20 Revised:2015-06-02 Online:2016-04-25 Published:2016-04-25
  • Supported by:

    The first author is supported by the Fundamental Research Funds for the Central Universities (2012201020204), and the second author is supported by NSFC (11171128, 11271148).

摘要:

We investigate topological entropy of periodic Coven cellular automatas; that is, the maps FB:{0, 1}Z→{0, 1}Z defined by FB(x)i=xi+(xi+j+bj) (mod 2), where B=b1b2br∈{0, 1}r(r≥2), is a periodic word. In particular, we prove that if the minimal period of B is greater than r/2, the topological entropy is log 2.

关键词: Cellular automata, periodic word, topological entropy

Abstract:

We investigate topological entropy of periodic Coven cellular automatas; that is, the maps FB:{0, 1}Z→{0, 1}Z defined by FB(x)i=xi+(xi+j+bj) (mod 2), where B=b1b2br∈{0, 1}r(r≥2), is a periodic word. In particular, we prove that if the minimal period of B is greater than r/2, the topological entropy is log 2.

Key words: Cellular automata, periodic word, topological entropy

中图分类号: 

  • 37B15