[1] Ambrosetti A. Critical points and nonlinear variational problems. Memoires de la Societe Mathematique de France, 1992, 49
[2] Ambrosetti A, Azorero G J, Peral I. Multiplicity results for some nonlinear elliptic equations. J Funt Anal, 1996, 137: 219–242
[3] Alves C O, Ding Y H. Multiplicity of positive solutions to a p-Laplacian equation involving critical non-liearity. J Math Appl, 2003, 279: 508–521
[4] Alves C O, Hamidi A E. Nehari manifold and existence of positive solutions to a class of quasilinear problems. Nonlinear Anal, 2005, 60: 611–624
[5] Anane A. Simplicite et isolation de la premiere valeur du p-Laplacien avec poids. C R Acad Sci Paris Ser I Math, 1987, 305: 725–728
[6] Azorero J G, Peral I. Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues. Comm Partial Differential Equations, 1987, 12: 1389–1430
[7] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437–477
[8] Brown K J, Wu T F. A fibering map approach to a semilinear elliptic boundary value problem. Electron J Differential Equations, 2007, 69: 1–9
[9] Brown K J, Wu T F. A fibering map approach to a potential operator equation and its applications. Differential Integral Equations, 2009, 22: 1097–1114
[10] Coron J M. Topologie et cas limite des injections de Sobolev. C R Acad Sci Paris, Ser I, 1984, 299: 209–212
[11] Deng Y, Wang G. On inhomogeneous biharmonic equations involving critical exponents. Proc Royal Soc Edinburgh, 1999, 129A: 925–946
[12] Deng Y, Jin L. Multiple positive solutions for a quasilinear nonhomogeneous Neuman problems with Hardy
exponents Nonlinear Analysis: TMA, 2007, 67: 3261–3275
[13] Deng Y, Li Y. Existence and bifurcation of the positive solutions for a semilinear equation with critical exponent. J Differential Equations, 1996, 130: 179–200
[14] Fan H, Liu X. Multiple positive solutions to a class of quasi-linear elliptic equations involving critical Sobolev exponent. Monatsh Math, 2013, DOI: 10.1007/s00605-013-0564-4
[15] He H, Yang J. Positive solutions for critical inhomogeneous elliptic problems in non-contractible domains. Nonlinear Anal TMA, 2009, 70: 952–973
[16] Hsu T S. Multiplicity results for p-Laplacian with critical nonlinearity of concave-convex type and sign-changing weight functions. Absr Appl Anal, 2009, 2009: 1–24
[17] Hsu T S. Multiple positive solutions for a class of quasi-linear elliptic equations involving concave-convex
nonlinearities and Hardy terms. Boundaray Value Problems, 2011, 2011: 1–15
[18] Kang D, Deng Y. Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev-Hardy exponents. Nonlinear Anal, 2005, 60: 729–753
[19] Kazdan J, Warner F. Remark on some quasilinear elliptic equations. Comm Pure Appl Math, 1975, 28: 567–597
[20] Kondrat’ev V A. Bundary value problems for elliptic equations in domains with conical points. Tr Mosk Mat Obs, 1967, 16: 209–292
[21] Pohozaev S I. Eigenfunctions for the equations u + f(u) = 0. Soviet Math Dokl, 1965, 6: 1408–1411
[22] Struwe M. Variational Methods. 2nd ed. Berlin, Heidelberg: Springer-Verlag, 1996
[23] Trudinger N S. On Harnack type inequalities and their application to quasilinear elliptic equations. Comm Pure Appl Math, 1967, 20: 721–747
[24] Tarantello G. On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann Inst H Poincare, 1992, 9: 281–304
[25] Willem W. Minimax Theorems. Birkhauser, 1996
[26] Wang L, Wei Q, Kang D. Multiple positive solutions for p-Laplace elliptic equations involving concave-convex nonlinearities and a Hardy-type term. Nonlinear Anal TMA, 2011, 74: 626–638
[27] Wang Q, Chen Z. Existence and multipicity of positive solutions to certain quasilinear elliptic equations in a ball. Acta Mathematica Scientia, 2006, 26B(1): 125–133
[28] Zhou H S. Positive solutions for nonhomogeneous elliptic equations with critical growth on R2. Acta Mathematica Scientia, 1998, 18(2): 124–138
|