[1] Bowen R. Topological entropy for noncompact set. Trans Amer Math Soc, 1973, 184: 125–136
[2] Bowen R. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. 2th Edition. Berlin: Springer-Verlag, 2008
[3] Chazottes J R. Dimensions and waiting times for Gibbs measures. J Statist Phys, 2000, 98(1/2): 305–320
[4] Cajar H. Billingsley Dimension in probability spaces. Berlin-New York: Springer-Verlag, 1981
[5] Gurevich B M, Tempelman A A. Hausdorff dimension of sets of generic points for Gibbs measures. J Statist Phys, 2002, 108(5/6): 1281–1301
[6] Ma J H, Wen Z Y. Haudorff and packing measure of sets of generic points: a zero-infinity law. J London Math Soc, 2004, 69(2): 383–406
[7] Olivier E. Dimension de Billingsley d’ensembles satur´es. C R Acad Sci Paris S´er I Math, 1999, 328(1): 13–16
[8] Pfister C E, Sullivan W G. Billingsley dimension on shift spaces. Nonlinearity, 2003, 16(2): 661–682
[9] Billingsley P. Ergodic theory and information. New York: John Wiley & Sons Inc, 1965
[10] Billingsley P. Convergence of probability measures. 2th edition. New York: John Wiley & Sons Inc, 1999
[11] Zinsmeister M. Thermodynamic formalism and holomorphic dynamical systems. Translated from the 1996 French original by C. Greg Anderson. SMF/AMS Texts and Monographs, 2. Providence: American Math-ematical Society, 2000
[12] Glasner E, Weiss B. On the interplay between measurable and topological dynamics//Hasselblatt B, Katok A B. Handbook of dynamical systems. Vol.1B. Amsterdam: Elsevier B V, 2006: 597–648
[13] Denker M, Grillenberger C, Sigmund K. Ergodic theory on compact spaces. Berlin-New York: Springer-Verlag, 1976
[14] Mattila P. Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge: Cambridge University Press, 1995
[15] Walters P. An introduction to ergodic theory. New York-Berlin: Springer-Verlag, 1982 |