[1] Bender K, Thompson F E. West Nile virus: a growing challenge. Amer J Nursing, 2003, 103(6): 32–39
[2] Bowman C, Gumel A B, van den Drissche P, Wu J, Zhu H. Mathematical model for assessing control strategies against West Nile virus. Bull Math Biol, 2005, 67: 1107–1133
[3] Blayneh KW, Gumel A B, Lenhart S, Clayton T. Backward bifurcation and optimal control in transmission dynamics of West Nile Virus. Bull Math Biol, 2010, 72(4): 1006–1028
[4] Brauer F. Backward bifurcation in simple vaccination models. J Math Anal Appl, 2004, 298(2): 418–431
[5] Centers for Disease Control and Prevention. Update: West Nile-like virus encephalitis-New York. Morb Mortal Wkly Rep, 2001, 48: 890–892
[6] Centers for Disease Control and Prevention. West Nile virus: virus history and distribution. 2002,
http://www.cdc.gov/ncidod/dvbid/westnile/background.htm (Accessed March 2010)
[7] Conway John B. Functions of One Complex Variable I. Berlin, Heidelrberg, New York: Springer-Verlag, 1978
[8] Cruz-Pacheco G, Esteva L, Montano-Hirose J A, Vargas D. Modelling the dynamics of West Nile virus. Bull Math Biol, 2005, 67: 1157–1172
[9] Darensburg T, Kocic V. On the discrete model of West Nile-like epidemics. Proc Dyn Appl, 2004, 4: 358–366
[10] Diekmann O, Heesterbeek J A P. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. New York: Wiley, 2000
[11] Garba S M, Gumel A B, Abu Bakar M R. Backward bifurcations in dengue transmission dynamics. Math Biosci, 2008, 215(1): 11–25
[12] Garba S M, Gumel A B. Effect of cross-immunity on the transmission dynamics of two strains of dengue. Int J Comp Math, 2007, 87(10): 2361–2384
[13] Garba S M, Safi M A, Gumel A B. Cross-immunity-induced backward bifurcation for a model of trans-mission dynamics of two strains of influenza. Nonlinear Analysis: Real World Applications, 2013, 14: 1384–1403
[14] Gourley S A, Liu R, Wu J. Eradicating vector-borne diseases via age-structured culling. J Math Biol, 2007, 54: 309–335
[15] Gourley S A, Liu R, Wu J. Some vector borne diseases with structured host populations: extinction and spatial spread. SIAM J Appl Math, 2007, 67(2): 408–433
[16] Hale J. Theory of Functional Differential Equations. Heidelberg: Springer-Verlag, 1977
[17] Hayes C G. West Nile fever. In the Arboviruses: Epidemiology and Ecology, 1988, 5: 59–88
[18] Health Canada General information on West Nile virus. 2003, http://www.hc-sc.gc.ca/english/westnile/
general.html (Accessed April 2010)
[19] Hethcote H W. The mathematics of infectious diseases. SIAM Review, 2000, 42: 599–653
[20] Hui W, Huaiping Z. The backward bifurcation in compartmental models for West Nile virus. Math Biosci, 2010, 227: 20–28
[21] Jang S R -J. On a discrete West Nile epidemic model. Comp Appl Math, 2007, 26: 397–414
[22] Kenkre V M, Parmenter R R, Peixoto I D, Sadasiv L. A theoretic framework for the analysis of the West Nile virus epidemic. Comp Math, 2006, 42: 313–324
[23] Lewis M, Renclawowicz J, van den Driessche P. Traveling waves and spread rates for a West Nile virus model. Bull Math Biol, 2006, 66: 3–23
[24] Lewis M A, Renclawowicz J, van den Driesssche P, Wonham M. A comparison of continuous and discrete-time West Nile virus models. Bull Math Biol, 2006, 68: 491–509
[25] Mickens R E. Calculation of denominator functions for nonstandard finite difference schemes for differential
equations satisfying a positivity condition. Numer Methods Partial Differ Equ, 2007, 23: 672–691
[26] Mukandavire Z, Garira W. Age and sex structured model for assessing the demographic impact of mother-to child transmission of HIV/AIDS. Bull Math Biol, 2007, 69(6): 2061–2092
[27] Nosal B, Pellizzari R. West Nile virus. Canad Medical Assoc J, 2003, 168(11): 1443–1444
[28] Rappole J, Derrickson S R, Hubalek Z. Migratory birds and spread of West Nile Virus in the western hemisphere. Emerging Infectious Diseases, 2000, 6: 1–16
[29] Ross R. The Prevention of Malaria. London: John Murray, 1911
[30] Sharomi O, Podder C N, Gumel A B, Elbasha E H, Watmough J. Role of incidence function in vaccine-induced backward bifurcation in some HIV models. Math Biosci, 2007, 210: 436–463
[31] Stuart A M, Humphries A R. Dynamical Systems and Numerical Analysis. New York: Cambridge Uni-versity Press, 1998
[32] Thomas D M, Urena B. A model describing the evolution of West Nile-like encephalitis in New York City. Math Comp Model, 2001, 34: 771–781
[33] van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for com-
partmental models of disease transmission. Math Biosci, 2002, 180: 29–48
[34] Wang W, Ma Zhien. Global dynamics of an epidemic model with time delay. Nonlinear Analysis: Real World Applications, 2002, 3: 365–373 |