[1] Blackmore T, Norton G H. Matrix-Product codes over Fq. Appl Algebra Engrg Comm Comput, 2001, 12: 477–500
[2] Dougherty S T, Skriganov M M. Macwilliams duality and Rosenbloom-Tsfasman metric. Moscow Math J, 2002, 2(1): 81–97
[3] Fan Y, Ling S, Liu H. Matrix Product codes over finite commutative Frobenius rings( to appear in Des Codes Cryptogr). DOI: 10.1007/s10623-012-9726-y
[4] Hammons A R, Kumar P V, Calderbank A R, et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans Inform Theory, 1994, 40: 301–319
[5] Hernando F, Lally K, Ruano D. Construction and decoding of matrix-product codes from nested codes. Appl Algebra Engrg Comm Comput, 2009, 20: 497–507
[6] Hernando F, Ruano D. New linear codes from matrix-product codes with polynomial units. Adv Math Commun, 2010, 4: 363–367
[7] Lee K. Automorphism group of the Rosenbloom-Tsfasman space. Eur J Combin , 2003, 24(1): 607–612
[8] McDonald B R. Finite Rings with Identity. New York: Marcel Dekker, 1974
[9] Norton G H, Salagean A. On the Hamming distance of linear codes over a finite chain ring. IEEE Trans Inform Theory, 2000, 46: 1060–1067
[10] Ould Medeni M B, Mamoun Souidi S E. Construction and bound on the performance of matrix-product codes. Appl Math Sci (Ruse), 2011, 5: 929–934
[11] Rosenbloom M Y, Tsfasman M A. Codes for the m-metric. Problems Inf Trans, 1997, 33(1): 45–52
[12] Skriganov M M. On linear codes with large weights simultaneously for the Rosenbloom-Tsfasman and Hamming metrics. J of Complexity, 2007, 23: 926–936
[13] Vasantha W B, Rajkumar R. Distance graphs of metric spaces with Rosenbloom-Tsfasman metric. arXiv:0902.4364v4
[14] Van Asch B. Matrix-Product codes over finite chain rings. Appl Algebra Engrg Comm Comput, 2008, 19:39–49
[15] Wood J. Duality for modules over finite rings and applications to coding theory. Amer J Math, 1999, 121: 555–575 |