[1] Araya Y. Ekeland´s variational principle and its equivalent theorems in vecvtor optimization. J Math Anal Appl, 2008, 346: 9–16
[2] Aubin J P, Ekeland I. Applied Nonlinear Analysis. New York: Wiley, 1984
[3] Bednarczuk E M, Przybyla M J. The vector-valued variational principle in Banach spaces ordered by cones with nonempty interiors. SIAM J Optim, 2007, 18: 907–913
[4] Bosch C, Garc´?a A, Garc´?a C L. An extension of Ekeland´s variational principle to locally complete spaces. J Math Anal Appl, 2007, 328: 106–108
[5] Caristi J. Fixed point theorems for mappings satisfying inwardness conditions. Trans Amer Math Soc, 1976, 215: 241–251
[6] Chen G Y, Huang X X. A unified approach to the existing three types of variational principles for vector valued functions. Math Meth Oper Res, 1998, 48: 349–357
[7] Chen G Y, Huang X X, Yang X Q. Vector Optimization: Set-Valued and Variational Analysis. Berlin: Springer-Verlag, 2005
[8] Cheng L, Zhou Y, Zhang F. Danes’ drop theorem in locally convex spaces. Proc Amer Math Soc, 1996, 124: 3699–3702
[9] Ekeland I. Sur les probemes variationnels. C R Acad Sci Paris, 1972, 275: 1057–1059
[10] Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47: 324–353
[11] Ekeland I. Nonconvex minimization problems. Bull Amer Math Soc, 1979, 1: 443–474
[12] Fang J X. The variational principle and fixed point theorems in certain topological spaces. J Math Anal Appl, 1996, 202: 398–412
[13] Feng Y, Liu S. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi´s type mappings. J Math Anal Appl, 2006, 317: 103–112
[14] Finet C, Quarta L, Troestler C. Vector-valued variational principle. Nonlinear Anal, 2003, 52: 197–218
[15] Georgiev P Gr. The strong Ekeland variational principle, the strong drop theorem and applications. J Math Anal Appl, 1988, 131: 1–21
[16] G¨opfert A, Riahi H, Tammer C, Zalinescu C. Variational Methods in Partially Ordered Spaces. New York: Springer-Verlag, 2003
[17] G¨opfert A, Tammer Chr, Z?alinescu C. On the vectorial Ekeland´s variational principle and minimal points in product spaces. Nonlinear Anal, 2000, 39: 909–922
[18] Hamel A H. Phelp´s lemma, Danes´ drop theorem and Ekeland´s principle in locally convex spaces. Proc Amer Math Soc, 2003, 131: 3025–3038
[19] He F, Qiu J H. Generalization of Phelps´ lemma to bornological vector spaces. Acta Math Sci, 2011, 31A: 369–377 (in Chinese)
[20] Isac G. The Ekeland´’s principle and the Pareto ?-efficiency//Tamiz M, ed. Multi-Objective Programming and Goal Programming: Theories and Applications. Lecture Notes in Econom and Math Systems, Vol 432. Berlin: Springer-Verlag, 1996: 148–163
[21] Isac G. Nuclear cones in product spaces, Pareto efficiency and Ekeland-type variational principle in locally convex spaces. Optim, 2004, 53: 253–268
[22] Kada O, Suzuki T, Takahashi W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math Japon, 1996, 44: 381–391
[23] Lin L J, Du W S. Ekeland´s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J Math Anal Appl, 2006, 323: 360–370
[24] Lin L J, Du W S. Some equivalent formulations of the generalized Ekeland´s variational principle and their applications. Nonlinear Anal, 2007, 67: 187–199
[25] Loridan P. ?-solutions in vector minimization problems. J Optim Theory Appl, 1984, 43: 265–276
[26] Mizoguchi N. A generalization of Brondsted’s result and its application. Proc Amer Math Soc, 1990, 108: 707–714
[27] Mizoguchi N, Takahashi W. Fixed point theorems for multivalued mappings on complete metric spaces. J Math Anal Appl, 1989, 141: 177–188
[28] N´emeth A B. A nonconvex vector minimization problem. Nonlinear Anal, 1986, 10: 669–678
[29] Park S. On generalizations of the Ekeland-type variational principle. Nonlinear Anal, 2000, 39: 881–889
[30] Penot J P. The drop theorem, the petal theorem and Ekeland´s variational principle. Nonlinear Anal, 1986, 10: 813–822
[31] Qiu J H. Local completeness and drop theorem. J Math Anal Appl, 2002, 266: 288–297
[32] Qiu J H. Ekeland´s variational principle in locally complete spaces. Math Nachr, 2003, 257: 55–58
[33] Qiu J H. Local completeness, drop theorem and Ekeland´’s variational principle. J Math Anal Appl, 2005, 311: 23–39
[34] Qiu J H. A generalized Ekeland vector variational principle and its applications in optimization. Nonlinear Anal, 2009, 71: 4705–4717
[35] Qiu J H, Rolewicz S. Ekeland´’s variational principle in locally p-convex spaces and related results. Studia Math, 2008, 186: 219–235
[36] Suzuki T. The strong Ekeland variational principle. J Math Anal Appl, 2006, 320: 787–794
[37] Takahashi W. Existence theorems generalizing fixed point theorems for multivalued mappings//Théra M A, Baillon J B, eds. Fixed Point Theory and Applications. Pitman Research Notes in Math Vol 252. Harlow: Longman Sci Tech, 1991: 397–406
[38] Tammer C. A generalization of Ekeland´’s variational principle. Optim, 1992, 25: 129–141
[39] Wong C W. A drop theorem without vector topology. J Math Anal Appl, 2007, 329: 452–471
[40] Wu Z. Equivalent formulations of Ekeland´s variational principle. Nonlinear Anal, 2003, 55: 609–615
[41] Zheng X Y. Drop theorem in topological vector spaces. Chin Ann Math, 2000, 21A: 141–148 (in Chinese)
[42] Zhong C K. On Ekeland´s variational principle and a minimax theorem. J Math Anal Appl, 1997, 205: 239–250 |