[1] Mollin R A, Williams H C. On a determination of real quadratic fields of class number one and related continued fraction period length less than 25. Proc Japan Acad Ser A Math Sci, 1991, 67: 20–25
[2] Mollin R A, Williams H C. Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception)//Mollin R A, eds. Number Theory (Banff, AB, 1988), Berlin: de Gruyter, 1990: 417–425
[3] Kim H K, Leu M G, Ono T. On two conjectures on real quadratic fields. Proc Japan Acad, 1987, 63: 222–224
[4] Lu H W. Gauss’s conjectures on the Quadratic Number Fields (in Chinese). Shanghai: Shanghai Scientific & Technical Publishers, 1994
[5] Biro A. Chowla’s conjecture. Acta Arith, 2003, 107: 179–194
[6] Biro A. Yokoi’s conjecture. Acta Arith, 2003, 106: 85–104
[7] Stark H M. On the complex quadratic fields with class number equal one. Trans Amer Math Soc, 1966, 122: 112–119
[8] Hecke E. Mathematische Werke. G¨ottingen: Vandenhoeck Ruprecht, 1970: 198–207
[9] Mollin R A. Class number one criteria for real quadratic fields (II). Proc Japan Acad Ser, 1987, 63: 162–164
[10] Mollin R A. Necessary and sufficient conditions for the class number of a real quadratic field to be one, and a Conjecture of Chowla S. Proc Amer Math Soc, 1988, 102: 17–21
[11] Caldwell C. A primality test. http://primes.utm.edu
[12] Matthhews K. Calculating the class number h(d) for real quadratic fields. http://www.numbertheory.org
[13] Riesel H. Prime Numbers and Computer Methods for Factorization. Basel: Birkh¨auser, 1985
[14] Lang S. Algebraic Number Theory. New York: Springer-Verlag, 1986 |