[1] Pham Van At. Reduction of a positive matrix to a quasi-stochastic matrix by a similar variation method. USSR Comput Math Phys, 1971, 11: 255–262
[2] Birkhoff G, Varga R S. Reactor criticality and non-negative matrices. J Soc Indust Appl Math, 1958, 6: 3540–377
[3] Brauer A. The theorems of Lederman and Ostrowsky on positive matrices. Duke Math J, 1957, 24: 265–274
[4] Brauer A. A method for the computation of the greatest root of a positive matrix. J Soc Indust Appl Math, 1957, 5: 250–253
[5] Bunse W. A class of diagonal transformation methods for the computation of the spectral radius of a nonnegative irreducible matrix. SIAM J Numer Anal, 1981, 18: 693–704
[6] Collatz L. Einschliessungssatz fuer die charakteristischen Zahlen von Matrizen. Math Z, 1942/1943, 48: 221–226
[7] Elsner L. Verfahren zur Berechnung des Spektralradius nichtnegativer irreducibler matrizen. Computing, 1971, 8: 32–39
[8] Elsner L. Verfahren zur Berechnung des Spektralradius nichtnegativer irreducibler Matrizen II. Computing, 1972, 9: 69–73
[9] Faddeev D K, Faddeeva V N. Computational Methods of Linear Algebra. San Fransisco, London: W H Freeman and Company, 1973
[10] Fan Ky. Topological proofs for certain theorems on matrices with non-negative elements. Monatsh Math, 1958, 62: 219–237
[11] Frobenius G F. Ueber Matrizen aus Positiven Elementen I and II. Sitzungsber, Berlin: Preuss Akad Wiss, 1908: 471–476; 1909: 514–518
[12] Gantmacher F R. Theory of Matrices, Vol 2. New York: Chelsea Publishing Co, 1959
[13] Hall C A, Porsching T A. Bounds for the maximal eigenvalue of a non-negative irreducible matrix. Duke Math J, 1969, 36: 159–164
[14] Hall C A, Porsching T A. Computing the maximal eigenvalue and eigenvector of a positive matrix. SIAM J Numer Anal, 1968, 5: 269–274
[15] Hall C A, Porsching T A. Computing the maximal eigenvalue and eigenvector of a non-negative irreducible matrix. SIAM J Numer Anal, 1968, 5: 470–474
[16] Horn R A, Johnson C R. Matrix Analysis. New York: Cambridge University Press, 1999
[17] Isaacson E, Keller H B. Analysis of Numerical Methods. New York: Dover, Mineola, 1966
[18] Lederman L. Bounds for the greatest latent roots of a positive matrix. J London Math Soc, 1950, 25: 265–268
[19] Markham T L. An iterative procedure for computing the maximal root of a positive matrix. Math Comput, 1968, 22: 869–871
[20] Tedja S. Oepomo. A contribution to Collatz’s eigenvalue inclusion theorem for nonnegative irreducible matrices. Elec J Linear Algebra, 2003, 10: 31–45
[21] Ostrowsky A M. Bounds for the greatest latent root of a positive matrix. J London Math Soc, 1952, 27: 253–256
[22] Ostrowsky A M, Schneider H. Bounds for the maximal characteristic root of a non-negative irreducible matrix. Duke Math J, 1960, 27: 547–553
[23] Schneider H. Note on the fundamental theorem on irreducible non-negative matrices. Proc Edinburgh Math Soc, 1958, 11(2): 127–130
[24] Varga R S. Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1962
[25] Wielandt H. Unzerlegbare, nicht negative Matrizen. Math Z, 1950, 52: 642–648; Mathematische Werke/Mathematical Works, Vol 2. Berlin: de Gruyter, 1996
[26] Wielandt H. Topics in the Analytical Theory of Matrices, Lecture Notes Prepared by R Meyer. Madison:
Department of Mathematics, University of Wisconsin, 1967
[27] Wilkinson J H. The Algebraic Eigenvalue Problem. Oxford: Claredon Press, 1965
[28] Wilkinson J H. Convergence of the LR, QR and related algorithms. Comp J, 1965, 8: 77–84
|