数学物理学报(英文版) ›› 2010, Vol. 30 ›› Issue (6): 1975-2005.doi: 10.1016/S0252-9602(10)60186-5
杨亦松
收稿日期:
2010-08-10
出版日期:
2010-11-20
发布日期:
2010-11-20
基金资助:
This article is based on a talk under the same title given at the conference ``Differential and Topological Problems in Modern Theoretical Physics", SISSA, Trieste, Italy, April 26--30, 2010.
YANG Yi-Song
Received:
2010-08-10
Online:
2010-11-20
Published:
2010-11-20
Supported by:
This article is based on a talk under the same title given at the conference ``Differential and Topological Problems in Modern Theoretical Physics", SISSA, Trieste, Italy, April 26--30, 2010.
摘要:
Monopoles and vortices are well known magnetically charged soliton solutions of gauge field equations. Extending the idea of Dirac on monopoles, Schwinger pioneered
the concept of solitons carrying both electric and magnetic charges, called dyons, which are useful in modeling elementary particles. Mathematically, the existence of dyons presents interesting variational partial differential equation problems, subject to topological constraints. This article is a survey on recent progress in the study of dyons.
中图分类号:
杨亦松. ELECTRICALLY CHARGED SOLITONS IN GAUGE FIELD THEORY[J]. 数学物理学报(英文版), 2010, 30(6): 1975-2005.
YANG Yi-Song. ELECTRICALLY CHARGED SOLITONS IN GAUGE FIELD THEORY[J]. Acta mathematica scientia,Series B, 2010, 30(6): 1975-2005.
[1] Actor A. Classical solutions of $SU(2)$ Yang--Mills theories. Rev Mod Phys, 1979, 51: 461--525 [4] Atiyah M F, Ward R S. Instantons and algebraic geometry. Commun Math Phys, 1977, 55: 117--124 [20] Chern S S, Simons J. Some cohomology classes in principal fiber bundles and their application to Riemannian geometry. Proc Nat Acad Sci USA, 1971, 68: 791--794 [21] Chern S S, Simons J. Characteristic forms and geometric invariants. Ann Math, 1974, 99: 48--69 [22] Cho Y M, Kimm K. Electroweak monopoles. Preprint, arXiv:hep-th/9705213. [23] Cho Y M, Maison D. Monopole configuration in Weinberg--Salam model. Phys Lett B, 1997, 391: 360--365 [30] Deser S, Jackiw R, Templeton S. Topologically massive gauge theories. Ann Phys, 1982, 140: 372--411 [31] Dirac P A M. Quantised Singularities in the electromagnetic field. Proc Royal Soc A, 1931, 133: 60--72 [32] Dunne G. Self-Dual Chern--Simons Theories. Lecture Notes in Physics, Vol 36. Berlin: Springer-Verlag, 1995 [35] Dziarmaga J. Low energy dynamics of [U(1)]N Chern--Simons solitons. Phys Rev D, 1994, 49: 5469--5479 [37] Felsager B. Geometry, Particles, and Fields. Berlin, New York: Springer-Verlag, 1998 [39] Fröhlich J, Marchetti P A. Quantum field theories of vortices and anyons. Comm Math Phys, 1989, 121: 177--223 [42] Gingras M J P. Observing monopoles in a magnetic analog of ice. Science, 2009, 26: 375--376 [47] Han J. Asymptotic limit for condensate solutions in the abelian Chern--Simons--Higgs model. Proc Amer Math Soc, 2003, 131: 1839--1845 [48] Han J, Huh H. Self-dual vortices in a Maxwell-Chern-Simons model with non-minimal coupling. Lett Math Phys, 2007, 82: 9--24 [49] Hirsch M. Differential Topology. New York, Heidelberg: Springer-Verlag,1976 [50] Hong J, Kim Y, Pac P Y. Multivortex solutions of the Abelian Chern--Simons--Higgs theory. Phys Rev Lett, 1990, 64: 2330--2333 [51] Horvathy P A, Zhang P. Vortices in (abelian) Chern-Simons gauge theory. Phys Rep, 2009, 481: 83--142 [52] Huh H. Local and global solutions of the Chern-Simons-Higgs system. J Funct Anal, 2007, 242: 526--549 [53] Humphreys J E. Introduction to Lie Algebras and Representation Theory. New York, Heidelberg: Springer-Verlag, 1972 [60] Jaffe A, Taubes C H. Vortices and Monopoles. Boston: Birkhäuser, 1980 [61] Jost J, Wang G. Analytic aspects of the Toda system. I. A Moser-Trudinger inequality. Comm Pure Appl Math, 2001, 54: 1289--1319 [62] Julia B, Zee A. Poles with both magnetic and electric charges in non-Abelian gauge theory. Phys Rev D, 1975, 11: 2227--2232 [63] Kao H C, Lee K. Self-dual SU(3) Chern--Simons Higgs systems. Phys Rev D, 1994, f50: 6626--6632 [64] Kawaguchi Y, Ohmi T. Splitting instability of a multiply charged vortex in a Bose--Einstein condensate. Phys Rev A, 2004, 70: 043610 [65] Khomskii D I, Freimuth A. Charged vortices in high temperature superconductors. Phys Rev Lett, 1995, 75: 1384--1386 [66] Kim C, Lee C, Kao P, Lee B H, Min H. Schrödinger fields on the plane with [U(1)]N Chern--Simons interactions and generalized self-dual solitons. Phys Rev D, 1993, 48: 1821--1840 [67] Kim N. Existence of vortices in a self-dual gauged linear sigma model and its singular limit. Nonlinearity, 2006, 19: 721--739 [68] Kontsevich M. Lecture Notes on Deformation Theory. Berkeley, 1995 [69] Kontsevich M. Formality conjecture//Gutt S, Rawnsley J, Sternheimer D, eds. Deformation Theory and Symplectic Geometry. Math Phys Stud 20. Dordrecht: Kluwer Acad Publ, 1997: 139--156 [71] Kubo R. Wigner representation of quantum operators and its applications to electrons in a magnetic field. J Phys Soc Japan, 1964, 19: 2127--2139 [72] Kumar C N, Khare A. Charged vortex of finite energy in nonabelian gauge theories with Chern--Simons term. Phys Lett B, 1986, 178: 395--399 [73] Lee K, Weinberg E J. Nontopological magnetic monopoles and new magnetically charged black holes. Phys Rev Lett, 1994, 73: 1203--1206 [74] Lai C H, ed. Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions. Singapore: World Scientific, 1981 [75] Lin C S, Ponce A C, Yang Y. A system of elliptic equations arising in Chern--Simons field theory. J Funct Anal, 2007, 247: 289--350 [76] Lin C S, Prajapat J V. Vortex condensates for relativistic abelian Chern-Simons model with two Higgs scalar fields and two gauge fields on a torus. Commun Math Phys, 2009, 288: 311--347 [77] Lucia M, Nolasco M. SU(3) Chern-Simons vortex theory and Toda systems. J Diff Eqs, 2002, 184: 443--474 [78] Macri M, Nolasco M, Ricciardi T. Asymptotics for self-dual vortices on the torus and on the plane: a gluing technique. SIAM J Math Anal, 2005, 37: 1--16 [79] Manton N. Complex structure of monopoles. Nucl Phys B, 1978, 135: 319--332 [80] Manton N, Sutcliffe P. Topological Solitons. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge Univ Press, 2004 [81] Matsuda Y, Nozakib K, Kumagaib K. Charged vortices in high temperature superconductors probed by nuclear magnetic resonance. J Phys Chem Solids, 2002, 63: 1061--1063 [83] Milnor J W. Topology from the Differentiable Viewpoint. Charlottesville: University Press of Virginia, 1965 [85] Morris DJ P, Tennant D A, Grigera S A, Klemke B, Castelnovo C, Moessner R, Czternasty C, Meissner M, Rule K C, Hoffmann J U, Kiefer K, Gerischer S, Slobinsky D, Perry R S. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7. Science, 2009, 326: 411--414 [94] Preskill J. Vortices and monopoles//Architecture of Fundamental Interactions at Short Distances. Les Houches, Session XLIV, 1985. Elsevier, 1987: 235--337 [99] Schwinger J. Sources and magnetic charge. Phys Rev, 1968, 173: 1536--1544 [101] Sokoloff J B. Charged vortex excitations in quantum Hall systems. Phys Rev B, 1985, 31: 1924--1928 [106] Tarantello G. Multiple condensate solutions for the Chern--Simons--Higgs theory. J Math Phys, 1996, 37: 3769--3796 [111] Tchrakian D H. The 't Hooft electromagnetic tensor for Higgs fields of arbitrary isospin. Phys Lett B, 1980, 91: 415--416 [112] t Hooft G. Magnetic monopoles in unified gauge theories. Nucl Phys B, 1974, 79: 276--284 [114] de Vega H J, Schaposnik F. Vortices and electrically charged vortices in non-Abelian gauge theories. Phys Rev D, 1986, 34: 3206--3213 [115] Weinberg E J. Parameter counting for multimonopole solutions. Phys Rev D, 1979, 20: 936--944 [116] Wells R O. Differential Analysis on Complex Manifolds. New York, Berlin: Springer-Verlag, 1980 [117] Wilczek F. Quantum mechanics of fractional-spin particles. Phys Rev Lett, 1982, 49: 957--959 [118] Wilczek F. Fractional Statistics and Anyon Superconductors. Singapore: World Scientific, 1990 [121] Yang Y. The Lee--Weinberg magnetic monopole of unit charge: existence and uniqueness. Physica D, 1998, 117: 215--240 [122] ang Y. Coexistence of vortices and antivortices in an Abelian gauge theory. Phys Rev Lett, 1998, 80: 26--29 [123] Yang Y. Strings of opposite magnetic charges in a gauge field theory. Proc Roy Soc A, 1999, 455: 601--629 [125] Yang Y. On the deformation of some Lie algebras. Acta Math Sci, 1984, 4: 509--517 [128] Zwanziger D. Quantum field theory of particles with both electric and magnetic charges. Phys Rev, 1968, 176: 1489--1495 |
[1] | 曹道珉, 彭双阶, 严树森. REGULARIZATION OF PLANAR VORTICES FOR THE INCOMPRESSIBLE FLOW[J]. 数学物理学报(英文版), 2018, 38(5): 1443-1467. |