[1] Dahmen W, DeVore R, Scherer K. Multi-dimensional Spline approximation. SIAM J Numer Anal, 1980, 17: 380--402
[2] Fang Gensun, Hickernell F J, Li Huan. Approximation on anisotropic Besov classes with mixed norm by standarded information. J Complexity, 2005, 21: 294--313
[3] Fang Gensun, Ye Peixin. Computational complexity in worst, stochastic and average case setting on functional approximation problem of multivariate. Acta Mathematica Scientia, 2005, 25B(3): 439--448
[4] Grover L. A framework for fast quantum mechanical algorithms//Proceedings of the 30th Annual ACM Symposium on the Theory of
Computing. New York: ACM Press, 1998: 53--62
[5] Heinrich S. Quantum summation with an application to integration. J Complexity, 2002, 18: 1--50
[6] Heinrich S. Quantum integration in Sobolev classes. J Complexity, 2003, 19: 19--42
[7] Heinrich S. Novak E. On a problem in quantum summation. J Complexity, 2003, 18: 1--18
[8] Heinrich S. Quantum approximation I. Imbeddings of finite-dimensional Lp spaces. J Complexity, 2004, 20: 5--26
[9] Heinrich S. Quantum approximation II. Sobolev imbeddings. J Complexity, 2004, 20: 27--45
[10] Hu Xiaofei, Ye Peixin. Quantum complexity of the integration problem for anisotropic classes. J Comput Math, 2005, 23 (3): 233--246
[11] Luo Junbo, Sun Yongsheng. Optimal recovery and widths of anisotropic Sobolev class of multivariate functions. Adva Math, 1998, 27: 69--77 (in Chinese)
[12] Nikolskii S M. Approximation of Functions of Several Variables and Imbedding Theorems. Berlin: Springer-Verlag, 1975
[13] Novak E. Quantum complexity of integration. J Complexity, 2001, 17: 2--16
[14] Shor P W. Introduction to Quantum Computing Algorithms. Boston: Birkhauser, 1999
[15] Temlyakov V N. Approximation of Periodic Functions. New York: Nova Science, 1993
|