[1] Baillet M, Denizeau Y, Havet J F. Indice d'une esperance conditionelle. Compositio Math, 1998, 66(2): 199--236
[2] Cover T M, Thomas J A. Elements of information theory. Chichester: John Wiley \& Sons Inc, 1976: 1--122
[3] Frank M, Kirchberg E. On conditional expectations of finite index. J Operator Theory, 1998, 40(1): 87--111
[4] Frank M, Larson D. A module frame concept for Hilbert C*-modules. Contemp Math, 2000, 247: 207--233
[5] Frank M, Larson D. Frames in Hilbert C*-modules and C*-algebras. J Operator Theory, 2002, 48(2): 273--314
[6] Ge L. Applications of free entropy to finite von neumann algebrasII. Annals of Mathematics, 1998, 147(1): 143--157
[7] Han D, Larson D. Frame, bases, and goup representations. Mem Math, 2000, 697: 1--100
[8] Lance C. Hilbert $C^\ast$-Modules. LMS note series, 1995, 210: 1--120
[9] Meng B, Guo M, Cao X. Operator-valued free Fisher information and modular frames. Proc Amer Math Soc, 2005, 133(10): 3087--3096
[10] Meng B, Guo M, Cao X. Some applications of free Fisher information on frame theory. J Math Anal Appl, 2005, 311(2): 466--478
[11] Guo M, Meng B, Cao X. Operator-valued free entropy and modular frames. Methods and Applications of Analysis, 2004, 11(2): 331--344
[12] Nica A, Shlyakhtenko D, Speicher R. Operator-valued distributions. 1. Characterizations of freeness. International Mathematics Research Notices, 2002, 29: 1509--1538
[13] Nica A, Shlyakhtenko D, Speicher R. Some minimization problems for the free analogue of the fisher information. Advances
in Mathematics, 1999, 141(2): 282--321.
[14] Popa A. Markov traces on universal Jones algebras and subfactors of finite index. Invent Math, 1993, 111(1): 375--405
[15] Speicher R. Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. Memoirs of AMS, 1998, 627(1): 1--90
[16] Shlyakhtenko D. Free entropy with respect to a completely positive map. Amer J Math, 2000, 122(1): 45--81
[17] Shlyakhtenko D. A-valued semicircular systems. J func Anal, 1999, 166(1): 1--47
[18] Shlyakhtenko D. Free Fisher information for non-tracial states. Pacific J Math, 2003, 211(2): 375-390
[19] Watatani Y. Index for C*-subalgebras. Memoirs AMS, 1990, 424(83): 1--50
[20] Voiculescu D, Dykema K, Nica A. Free random variables. CRM Monograph Series, 1992, 1: 1--100
[21] Voiculescu D. Operations on certain Non-commutative operator-valued random variables. Ast\'{e}risque, 1995, 232(1): 243--275
[22] Voiculescu D. The analogues of entropy and of fisher's information measure in free probability theory III: The absence of cartan subalgebras. Geometric and Functional Analysis, 1996, 1(6): 172--199
[23] Voiculescu D. The analogues of entropy and of Fisher's information measure in free probability theory V. Noncommutative Hibert Transforms. Inventiones Mathematicae, 1998, 132(1): 189--227
[24] Voiculescu D. The analogues of entropy and of fisher's information measure in free probability theory VI. Liberation and mutual free information. Advances in Mathematics, 1999, 146(1): 101--166 |