[1] Song W. Duality for vector optimization of set-valued functions. J Math Anal Appl, 1996, 201: 212--225
[2] Chen G Y, Rong W D. Characterizations of the Benson proper efficiency for nonconvex vector optimization. J Optim Theory Appl, 1998, 98: 365--384
[3] Li Z F. Benson proper efficiency in the vector optimization of set-valued maps. J Optim Theory Appl, 1998, 98: 623--649
[4] Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-valued functions. J Optim Theory Appl, 2001, 110: 413--427
[5] Liu S, Sheng B. The optimality conditions and duality of nonconvex vector set-valued optimization with Benson
proper efficiency. Acta Math Appl Sinica, 2003, 26: 337--344 (in Chinese)
[6] Sach P H. Nearly subconvexlike set-valued maps and vector optimization problems. J Optim Theory Appl, 2003, 119: 335--356
[7] Zheng X Y. Proper efficiency in locally convex topological vector spaces. J Optim Theory Appl, 1997, 94: 469--486
[8] Qiu J H, Mckennon K. Strictly extreme and strictly exposed points. Internat J Math \& Math Sci, 1994, 17: 451--456
[9] Zheng X Y. Drop theorem in topological vector spaces. Chinese Ann Math, 2000, 21A: 141--148 (in Chinese)
[10] Qiu J H. Strong Minkowski separation and co-drop property. Acta Math Sinica, 2007, 23B: 2295--2302
[11] Köthe G. Topological Vector Spaces I. Berlin: Springer-Verlag, 1969
[12] Kelly J L, Namioka I, et al. Linear Topological Spaces. Princeton: Van Nostrand, 1963
[13] Guerraggio A, Molho E, Zaffaroni A. On the notion of proper efficiency in vector optimization. J Optim Theory
Appl, 1994, 82:1-21 |