[1] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans Antennas Propag, 1966, 14: 302--307
[2] Taflove A, Brodwin M E. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Trans Microwave Theory Tech, 1975, 23: 623--630
[3] Taflove A. Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems. IEEE Trans Electromagn Compat, 1980, 22: 191--202
[4] Jurgens T G, Taflove A, Umashankar K R, Moore T G. Finite-difference time-domain modeling of curved surfaces. IEEE Trans Antennas Propag, 1992, 40: 357--366
[5] Dey S, Mittra R. A locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting object. IEEE Microwave Guid Wave Lett, 1997, 7: 73--275
[6] Dey S, Mittra R. A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects. IEEE Microw Opt Technol Lett, 1998, 17: 349--352
[7] Dey S, Mittra R. A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators. IEEE Trans Microw Theory Tech, 1999, 47: 1737--1739
[8] Holland R. Finite-difference solution of Maxwell's equations in generalized nonorthogonal coordinates. IEEE Trans Nuclear Science, 1983, NS-30: 4589--4591
[9] Lee J -F, Palandech R, Mittra R. Modeling three-dimensional discontinuities in waveguide using nonorthogonal FDTD algorithm. IEEE Trans Microw Theory Tech, 1992, 40(2): 346--352
[10] Madsen N. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids. J Comput Phys, 1995, 119: 34--45
[11] Gedney S, Lansing F, Rascoe D. Full wave analysis of microwave monolithic circuit devices using a generalized Yee-algorithm based on an unstructured grid. IEEE Trans Microw Theory Tech, 1996, 44(2): 1393--1400
[12] Liu J, Brio M, Moloney J V. Overlapping Yee FDTD method on nonorthogonal grids. J Sci Comput, 2009, 39(1): 129--143. doi:10.1007/s10915-008-9253-1
[13] Mohammadi A, Nadgaran H, Agio M. Contour-path effective permittivities for the two-dimensional finite-difference time-domain method. Opt Express, 2005, 13(25): 10367--10381
[14] Kaneda N, Houshmand B, Itoh T. FDTD analysis of dielectric resonators with curved surfaces. IEEE Trans Microw Theory Tech, 1997, 45(9): 1645--1649
[15] Farjadpour A, Roundy D, Rodriguez A, et al. Improving accuracy by subpixel smoothing in the finite-difference time domain. Opt Lett, 2006, 31(20): 2972--2974
[16] Werner G R, Cary J R. A stable FDTD algorithm for non-diagonal, anisotropic dielectrics. J Comput Phys, 2007, 226: 1085--1101
[17] Calhoun D A, Helzel C, LeVeque R J. Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains.
SIAM Rev, 2008, 50(4): 723--752. doi:http://dx.doi.org/10.1137/060664094.
[18] Sacks Z S, Kingsland D M, Lee R, Lee J -F. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans Antennas Propag, 1995, 43: 1460--1463
[19] Gedney S. An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices. IEEE Trans Antennas Propag, 1996, 44: 1630--639
[20] Jackson J D. Classical Electrodynamics. 2nd ed. New York: Wiley, 1975
[21] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983
|