[1] Rosenthal H P. On the estimations of sums of independent random variables. Israel J Math, 1970, 8:
273–303
[2] Burkholder D L. Distribution function inequalities for martingales. The Annals of Probability, 1973, 1:
19–42
[3] Hall P, Heyde C C. Martingale limit theory and its application. New York, London, Toronto, Sydney, San
Francisco: Academic Press, 1980
[4] Talagrad M. Isoperimetry and integrability of the sum of independent Banach space valued random vari-
ables. The Annals of Probability, 1989, 17: 1546–1570
[5] Acosta A D. Inequalities for B-valued random vectors with applications to the large numbers. The Annals
of Probability, 1981, 9: 157–161
[6] Gan S X. Moment inequalieies for B-valued random vectors with applications to the strong limit theorems.
Statistics and Probability Letters, 2004, 67: 111–119
[7] Mogyoródi J. On an inequality of H. P. Rosenthal. Periodica Mathematica Hungarica, 1977, 8(3/4):
275–279
[8] Burkholder D L, Davis B J, Gundy R F. Integral inequalities for convex functions of operators on martin-
gales. In: Proc Sixth Berkeley Symp. Math Statist Prob, 1972, 2: 223–240
[9] Garsia A M. On a convex function inequality for martingales. The Annals of Probability, 1973, 1: 171–174
[10] Pisier G. Martingale with valued in uniformly convex spaces. Isreal J Math, 1975, 20: 326–350
[11] Liu P D. Some new resultes on martingale inequalities and geometry in Banach spaces. Acta Mathematica
Scientia, 1992, 12B(1): 22–32
[12] Liu P D. Martingale and the geometry of Banach spaces(in Chinese). Beijing: Science Press, 2007
[13] Liu P D, Bekjan T N. Φ-inequalities and laws of large numbers of Hardy martingale transforms. Acta
Mathematica Scientia, 1997, 17B(3): 269–275
[14] Petrovi´c M. Sur une fonctionnellc. Publ Math Univ Belgrade, 1932, 1: 149–146
[15] Hoffmann-Jørgensen J, Pisier G. The law of large numbers and the central limit theorem in Banach space.
The Annals of Probability, 1976, 4: 587–599
|