[1] Cartan H. Sur la possibilit´e d’´etendre aux fonctions de plusieurs variables complexes la theorie des fonctions univalent//Montel P, eds. Lecons sur les Fonctions Univalent ou Mutivalents. Paris: Gauthier-Villar, 1933
[2] Gong S. The Bieberbach Conjecture. Providence, R I, Amer Math Soc: International Press, 1999
[3] Hamada H, Honda T. Sharp growth theorems and coefficient bounds for starlike mappings in several complex Variables. Chin Ann Math Ser B, 2008, 29(4): 353–368
[4] Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions. New York: Marcel Dekker, 2003
[5] Hamada H, Kohr G, Liczberski P. Starlike mappings of order on the unit ball in complex Banach spaces. Glas Mat Ser III, 2001, 36: 39–48
[6] Lin Y Y, Hong Y. Some properties of holomorphic maps in Banach spaces. Acta Math Sinica, 1995, 38(2): 234–241 [in Chinese]
[7] Liu M S, Zhu Y C. Some Sufficient conditions for Biholomorphic convex mappings on Bn p . J Math Anal Appl, 2006, 316: 210–228
[8] Liu T S, Liu X S. A refinement about estimation of expansion coefficients for normalized biholomorphic mappings. Science in China, 2005, 48A(7): 865–879
[9] Liu X S. On the quasi-convex mappings on the unit polydisk in Cn. J Math Anal Appl, 2007, 335: 43–55
[10] Liu X S, Liu T S. The refining growth, covering theorems and the refining estimation of expansion coefficients for spirallike mappings of type . Acta Math Sinica, 2006, 49(3): 567–576 [in Chinese]
[11] Liu X S, Liu T S. The refined estimation of homogeneous expansion for two subclasses of normalized biholomorphic mappings. Acta Math Sinica, 2007, 50(2): 393–400 [in Chinese]
[12] Liu X S, Liu T S. The refining estimation of homogeneous expansion for quasi-convex mappings. Advances in Math (China), 2007, 36(6): 679–685
[13] Liu X S, Liu T S. An inequality of homogeneous expansion for biholomorphic quasi-convex mappings on the unit polydisk and its application. Acta Mathematica Scientia, 2009, 29B(1): 201–209
[14] Merkes E P, Robertson M S, Scott W T. On products of starlike functions. Proc Amer Math Soc, 1962, 13: 960–964
[15] Nevanlinna R. ¨Uber die konforme Abbildung von Sterngebieten. ¨Oversikt av Finska Vetenskaps-Soc F¨orh, 1920/1921, 63A: 1–21
[16] Robertson M S. On the theory of univalent functions. Ann Math, 1936, 37: 374–408
[17] Roper K A, Suffridge T J. Convexity properties of holomorphic mappings in Cn. Trans Amer Math Soc, 1999, 351: 1803–1833
[18] Suffridge T J. Starlike and convex maps in Banach spaces. Pacific Jour of Math, 1973, 46: 575–589
[19] Taylor A E, Lay D C. Introduction to functional analysis, New York: John Wiley Sons Inc, 1980
[20] Xu Q H. Properties and relations of subclasses of biholomorphic mappings in several complex variables[Doctoral dissertation]. Hefei: Univ Sci Tech China, 2006 [in Chinese]
[21] Xu Q H, Liu T S. The coefficient estimations of a class of holomorphic mappings. Science in China, 2009, 52A(4): 677–686
[22] Zhang W J, Dong D Z, Wang Y Z. The growth theorem for convex maps on the Banach space. Chin Quart of Math, 1992, 7: 84–87
[in Chinese]
[23] Zhu Y C. Biholomorphic convex mappings on Bn p . Chin Ann Math Ser A, 2003, 24: 269–278 [in Chinese]
[24] Zhu Y C. -convex mappings on Bp. Acta Mathematica Scientia, 2005, 25A(1): 84–92 [in Chinese] |