[1] Kazuaki N, Harvey S, Miki W. Integrability and the motion of curves. Phys Rev Lett, 1992, 69(18):2603-2606
[2] Kazuaki N, Miki W. Motion of curves in the plane. J Phys Soc Japan, 1993, 62(2):473-479
[3] Joel L, Ron P. Curve motion inducing modified Korteweg-de Vries systems. Phys Lett A, 1998, 239(1-2):36-40
[4] Chou K S, Qu C Z. The KdV equation and motion of plane curves. J Phys Soc Japan, 2001, 70(7):1912-1916
[5] Chou K S, Qu C Z. Integrable motions of space curves in affine geometry. Chaos Solitons Fractals, 2002, 14(1):29-44
[6] Chou K S, Qu C Z. Integrable equations arising from motions of plane curves. Phys D, 2002, 162(1-2):9-33
[7] Chou K S, Qu C Z. Motions of curves in similarity geometries and Burgers-mKdV hierarchies. Chaos Solitons Fractals, 2004, 19(1):47-53
[8] Raymond E G, Dean M P. The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys Rev Lett, 1991, 67(23):3203-3206
[9] Chou K S, Qu C Z. Integrable equations arising from motions of plane curves II. J Nonlinear Sci, 2003, 13(5):487-517
[10] Metin G. Motion of curves on two-dimensional surfaces and soliton equations. Phys Lett A, 1998, 241(6):329-334
[11] Kazuaki N. Motion of curves in hyperboloids in the Minkowski space II. J Phy Soc Japan, 1999, 68(10):3214-3218
[12] Schief W K, Rogers C. Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces. R Soc Lond Proc Ser A Math Phys Eng Sci, 1999, 455(1988):3163-3188
[13] Alper O Ö, Mustafa Y. Inextensible curves in the Galilean space. Int J Phy Sci, 2010, 5(9):1424-1427
[14] Alper O Ö, Mustafa Y, Mihriban K. Inelastic admissible curves in the Pseudo-Galilean space G13. Int J Open Probl Comput Sci Math, 2011, 4(3):199-207
[15] Dae W Y. Inelastic flows of curves according to equiform in Galilean space. J Chungcheong Math Soc, 2011, 24(4):665-673
[16] Tevfik ?. Intrinsic equations for a generalized relaxed elastic line on an oriented surface in the Galilean space. Acta Math Sci, 2013, 33B(3):701-711
[17] Bla?enka D, ?eljka M Š. Special curves on ruled surfaces in Galilean and Pseudo-Galilean spaces. Acta Math Hungar, 2003, 98(3):203-215
[18] Boris J P, Ivan K. The equiform differential geometry of curves in the Galilean space G3. Glas Mat Ser III, 1987, 22(2):449-457
[19] Boris J P. The general solution of the Frenet system of differential equations for curves in the Galilean space G3. Rad Jugoslav Akad Znan Umjet, 1990, (450):123-128
[20] Otto R. Die Geometrie des Galileischen Raumes. Graz:Forschungszentrum Graz Mathematisch-Statistische Sektion, 1985
[21] Isaak M Y. A Simple Non-Euclidean Geometry and its Physical Basis. New York:Springer-Verlag, 1979 |