[1] Abdelmoumen B, Dehici A, Jeribi A, Mnif M. Some new properties in Fredholm theory, Schechter essential spectrum, and application to transport theory. J Ineq Appl, 2008: Art ID 852676
[2] Abdmouleh F, Ammar A, Jeribi A. Stability of th S-essential spectra on a Banach space. Math Slovaca
2013, 63(2): 299–320
[3] Akashi W Y. On the perturbation theory for Fredholm operators. Osaka J Math, 1984, 21: 603–612
[4] Artstein Z. Continuous dependence of solutions of operator equations. Trans Amer Math Soc, I, 1977, 231(1): 143–166
[5] Astala K. On measures of noncompactness and ideal variations in Banach spaces. Ann Acad Sci Fenn Ser A I Math: Dissertationes, 1984, 29: 42
[6] Aiena P. Semi Fredholm operators, perturbation theory and localized SVEP. Venez, 2 Al 7 de Septiembre de 2007
[7] Chaker W, Jeribi A, Krichen B. Demicompact linear operators, essential spectrum and some perturbation results. 2013, preprint
[8] Edmunds D E, Evans W D. Spectral theory and differential operators. New York: The Clarendon Press Oxford University Press, 1987
[9] Faierman M, Mennicken R, Moller M. A boundary eigenvalue problem for a system of partial differential operators occuring in magnetohydrodynamics. Math Nachr, 1995, 173: 141–167
[10] Jeribi A. Une nouvelle caracterisation du spectre essentiel et application. C R Acad Sci Paris, Serie I, 2000, 331(7): 525–530
[11] Jeribi A. A characterization of the essential spectrum and applications. J Boll Dell Unio Mate Itali, 2002, 5B(8): 805–825
[12] Jeribi A. A characterization of the Schechter essential spectrum on Banach spaces and applications. J Math Anal Appl, 2002, 271: 343–358
[13] Jeribi A, Mnif M. Fredolm operators, essential spectra and application to transport equations. Acta Appl Math, 2005, 89: 155–176
[14] Jeribi A, Moalla N. A characterisation of some subsets of Schechters essential spectrum and Singular transport equation. J Math Anal Appl, 2009, 358(2): 434–444
[15] Jeribi A, Moalla N, Yengui S. S-essential spectra and application to an example of transport operators. To appear in math Meth Appl Sci, 2013
[16] Kato T. Perturbation Theory for Linear Operators. New York: Springer-Verlag, 1966
[17] Kuratowski K. Sur les espaces complets. Fund Math, 1930, 15: 301-309
[18] Kuratowski K. Topology. New York: Hafner, 1966
[19] Latrach K, Jeribi A. On the essential spectrum of transport operators on L1-spaces. J Math Phys, 1996, 37(12): 6486–6494
[20] Latrach K, Jeribi A. Some results on Fredholm operators, essential spectra and application. J Math Anal Appl, 1998, 225(2): 461–485
[21] Lindenstrauss J, Tzafriri L. Classical Banach Spaces I. Berlin, Heidelberg, New York: Springer-Verlag, 1977
[22] M¨uller V. Spectral theory of linear operators and spectral systems in Banach algebras. Basel: Birkh¨auser
Verlag, 2003
[23] Opial Z. Nonexpansive and monotone mappings in Banach spaces. Center for Dynamical Systems, Brown
Univ, Providence, R.I. 1967: 1–67
[24] Petryshyn W V. Construction of fixed points of demicompact mappings in Hilbert space. J Math Anal Appl, 1966, 14: 276–284
[25] Petryshyn W V. Remarks on condensing and k-set-contractive mappings. J Math Anal Appl, 1972, 39: 717–741
[26] Schechter M. On the essential spectrum of an arbitrary operator. I. J Math Anal Appl, 1966, 13: 205–215
[27] Schechter M. Principles of Functional Analysis. New York: Academic Press, 1971
[28] Wolf F. On the invariance of the essential spectrum under a change of boundary conditions of partial differential boundary operators. Nederl Akad Wetensch Proc Ser A 62 = Indag Math, 1959, 21: 142–147 |