[1] Bahouir H. Non prolongment unique des solutions d'operatteurs. Ann Inst Fourier Grenable, 1986, 36(4): 137--155
[2] Balogh Z M, Tyson J T. Polar coordinates in Carnot groups. Math Z, 2002, 241(4): 697--730
[3] Capogna L, Danielli D, Garofalo N. Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Amer J Math, 1997, 118: 1153--1196
[4] D'Ambrosio L. Hardy type inequalities related to degenerate differential operators. Annali della Scuola Normale Superiore di Pisa, 2005, 4(3): 451--486
[5] Folland G B. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark Mat, 1975, 13(2): 161--207
[6] Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Princeton, New Jersy: Princeton University Press, 1982
[7] Gallardo L C. Mouvement brownien et probl\`{e}me de lépine de Lebesgue sur les groupes de Lie nilpotents//Probability Measures on Groups. Lecture Notes in Math, Vol 928. Berlin: Springer, 1981: 96--120
[8] Garofalo N. Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codinension. J Diff Eqs, 1993,
104: 117--146
[9] Garofalo N, Lanconelli E. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann Inst Fourier, 1990, 40(2): 313--356
[10] Han J, Dai S Y, Pan Y F. On unique continuation property for the sub-Laplacian in the Heisenberg group. System Science and Mathematics (in Chinese), 2008, 28(1): 99--106
[11] Heinonen J. Calculus on carnot groups//Fall School in Analysis of Report, Vol 68. Jyväskylä: Jyväskylä University, 1994: 1--31
[12] Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans Amer Math Soc, 1980,
258: 147--153
[13] Luo X B. Removable singularities theorems for solutions of quasihomogeneous hypoelliptis equations//Proc Conf Partial Differential Equations and their Applications. Singapore : World Scientific, 1999: 200--210
[14] Pan Y F. Unique continuation for Schrodinger operators with singular potential. Comm Part Differ Equa, 1992, 17(5): 953--965
[15] Zhang H Q, Niu P C, Wang S J. Unique continuation property and Carlemn type estimate for the sub-Laplacian on the Heisenberg group. System Science and Mathematics (in Chinese), 2003, 23(1): 51--57
[16] Jin K, Chang Q. Remark on unique continuation of solutions to the Stokes and Navier-Stokes equations. Acta Math Sci, 2005, 25B(4): 594--598
|