[1] Albeverio S, Gottschalk H, Wu J L. Convoluted generalized white noise, Schwinger functions and their continuation to Wightman functions. Rev Math Phys, 1997, 184: 509--531
[2] Albeverio S, Wu J L. Euclidean random fields obtained by convolution from generalized white noise. J Math Phys, 1995, 36: 5217--5245
[3] Baez J C. Wick products of the Free bose field. J Func Anal, 1989, {\bf 86}: 211--225
[4] Grothaus M, Streit L. Construction of relativistic quantum fields in the framework of white noise analysis. J Math Phys, 1999, 40: 5387--5405
[5] Hida T, Kuo H H, Potthoff J, Streit L. White Noise, an Infinite Dimensional Analysis. Dordrecht: Kluwer, 1992
[6] Huang Z Y. Quantum white noise, white noise approch to quantum stochastic calculus. Nagoya Math J, 1993, 129: 23--42
[7] Huang Z Y, Luo S L. Quantum white noise and free fields. Infinite Dimensional Analysis, Quantum Probabilty and Related Topics, 1998, 1: 69--82
[8] Huang Z Y, Luo S L. Wick calculus of generalized operators and its applications to quantum stochastic calculus. Infinite Dimensional Analysis, Quantum Probabilty and Related Topics, 1998, 1: 455--466
[9] Huang Z Y, Rang G L. White noise approach to the construction of φ44 quantum fields. Acta Applicandae Mathematicae, 2003, 77: 299--318
[10] Huang Z Y, Rang G L. White noise approach to interacting quantum field theory//Albeverio S, Ma Z M, Roeckner M, eds. Proceedings of the First Sino-German Conference on Stochastic Analysis (A Satellite Conference of ICM 2002), Recent Developments In Stochastic Analysis and Related Topics. Singapore: World Sientific Publishing, 2004: 220--234
[11] Huang Z Y, Rang G L. Generalized operators and P(Φ)2 quantum fields. Acta Math Sci, 2004, 24B: 589--596
[12] Huang Z Y, Wang C S, Wang X J. Quantum cabel equations in terms of generalized operators. Acta Applicandae Mathematicae, 2000, 63: 151--164
[13] Huang Z Y, Wang X J, Wang C S. Generalized operators and operator-valued distributions in quantum fields theory. Acta Math Sci, 2003, 23B: 145--154
[14] Huang Z Y, Yan J A. Introduction to Infinite Dimensional Stochastic Analysis. Beijing: Scinece Press/Kluwer Academic Publishers, 2000
[15] L{\o}kka A, Øksendal B, Proske F. Stochastic partial differential equations driven by Levy space-time white noise. Ann Appl Prob, 2004, 14: 1506--1528
[16] Løkka A, Proske F. Infinite dimensional analysis of pure jump Levy processes on the Poisson space. Math Scand, 2006, 98: 237--261
[17] Luo S L. Wick algebra of generalized operators involving quantum white noise. J Operator Theory, 1997, 38: 367--368
[18] Narasimhan R. Analysis on Real and Complex Manifolds. Dordrecht: North-Holland Inc, 1973
[19] Obata N. White Noise Analysis and Fock Space. Lecture Notes in Math, Vol 1577. Berlin: Springer-Verlag, 1994
[20] Osipov E P. Quantum interaction: φ4:, the construction of quantum field defined as a bilinear form. J Math Phys, 2000, 41: 759--786
[21] Potthoff J, Streit L. Invariant states on random and quantum fields, φ-bounds and white noise analysis. J Funct Anal, 1993, 111: 295--331
[22] Raczka R. The construction of solution of nonlinear relativistic wave equation in $\lambda: φ4: theory. J Math Phys, 1975, 16: 173--176
[23] Rang G L, Huang Z Y. White noise approach to the construction of φ44 quantum fields (II). Acta Mathematica Sinica, English Series, 2007, 23(5): 895-904
[24] Reed M, Simon B. Methods of Modern Mathematical Physics, Vol 2, 3. New York: Academic Press, 1975
[25] Strauss W. Nonlinear Wave Equations. Providence, RI: Amer Math Soc, 1989
[26] Yan J A. From Feynman-Kac formular to Feynman integarls via analytic continuation. Stoch Proc Appl, 1994, 54: 215--232
|