[1] Auscher P. On necessary and sufficient conditions for $L^p$-estimates of Riesz transforms associated to elliptic operators on $\mathbb{R}^{n}$ and related estimates. Mem Amer Math Soc, 2007, 186(871): xviii+75 pp [2] Auscher P, Hofmann S, Lacey M, et al. The solution of the Kato square root problem for second order elliptic operators on $\mathbb{R}^{n}$. Ann of Math, 2002, 156(2): 633-654 [3] Auscher P, Martell J M. Weighted norm inequalities, off-diagonal estimates and elliptic operators. III: Harmonic analysis of elliptic operators. J Funct Anal, 2006, 241(2): 703-746 [4] Auscher P, Martell J M. Weighted norm inequalities, off-diagonal estimates and elliptic operators. II: Off-diagonal estimates on spaces of homogeneous type. J Evol Equ, 2007, 7(2): 265-316 [5] Auscher P, Martell J M. Weighted norm inequalities, off-diagonal estimates and elliptic operators. I: General operator theory and weights. Adv Math, 2007, 212(1): 225-276 [6] Auscher P, Tchamitchian P.Square Root Problem for Divergence Operators and Related Topics. Paris: Soc Math de France, 1998 [7] Blunck S, Kunstmann P. Calderón-Zygmund theory for non-integral operators and the $H^{\infty}$-functional calculus. Rev Mat Iberoamericana, 2003, 19(3): 919-942 [8] Bui T A, Duong X T. Weighted norm inequalities for singular integrals with non-smooth kernels. Math Z, 2020, 295(3/4): 1733-1750 [9] Caffarelli L, Peral I. On $W^{1,p}$ estimates for elliptic equations in divergence form. Comm Pure Appl Math, 1998, 51(1): 1-21 [10] Cruz-Uribe D, Martell J M, Rios C. On the Kato problem and extensions for degenerate elliptic operators. Anal PDE, 2018, 11(3): 609-660 [11] Cruz-Uribe D, Rios C. The Kato problem for operators with weighted ellipticity. Trans Amer Math Soc, 2015, 367(7): 4727-4756 [12] Escauriaza L, Hofmann S. Kato square root problem with unbounded leading coefficients. Proc Amer Math Soc, 2018, 146(12): 5295-5310 [13] Geng J. $W^{1,p}$ estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains. Adv Math, 2012, 229(4): 2427-2448 [14] Gilbarg D, Trudinger N S.Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001 [15] Grafakos L. Classical Fourier Analysis. New York: Springer, 2014 [16] Hofmann S, Li L, Mayboroda S, et al. $L^p$ theory for the square roots and square functions of elliptic operators having a BMO anti-symmetric part. Math Z, 2022, 301(1): 935-976 [17] Jiang R. Riesz transform via heat kernel and harmonic functions on non-compact manifolds. Adv Math, 2021, 377: 107464 [18] Jiang R, Lin F. Riesz transform under perturbations via heat kernel regularity. J Math Pures Appl, 2020, 133: 39-65 [19] Kato T.Perturbation Theory for Linear Operators. New York: Springer-Verlag, 1966 [20] Kato T. Fractional powers of dissipative operators. J Math Soc Japan, 1961, 13: 246-274 [21] Li L, Pipher J. Boundary behavior of solutions of elliptic operators in divergence form with a BMO anti-symmetric part. Comm Partial Differential Equations, 2019, 44(2): 156-204 [22] Lions J L. Espaces d'interpolation et domaines de puissances fractionnaires d'op$\mathrm{\acute{e}}$rateurs. J Math Soc Japan, 1962, 14: 233-241 [23] Martell J M. Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications. Studia Math, 2004, 161(2): 113-145 [24] McIntosh A. On the comparability of $A^{1/2}$ and $A^{*1/2}$. Proc Amer Math Soc, 1972, 32: 430-434 [25] McIntosh A. Square root of operators and applications to hyperbolic PDEs. Proc Centre Math Appl, Canberra, 1984, 5: 124-136 [26] McIntosh A. Operators which have an $H^{\infty}$ functional calculus. Proc Centre Math Anal, Canberra, 1986, 14: 210-231 [27] Pazy A.Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Applied Mathematical Sciences. New York: Springer-Verlag, 1983 [28] Seregin G, Silvestre L, $\mathrm{\check{S}}$verák V, et al. On divergence-free drifts. J Differential Equations, 2012, 252(1): 505-540 [29] Shen Z. Bounds of Riesz transforms on $L^p$ spaces for second order elliptic operators. Ann Inst Fourier (Grenoble), 2005, 55(1): 173-197 [30] Stein E M.Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton University Press, 1993 [31] Yang D, Zhang J. Weighted $L^p$ estimates of Kato square roots associated to degenerate elliptic operators. Publ Mat, 2017, 61(2): 395-444 [32] Yang S, Chang D C, Yang D, et al. Weighted gradient estimates for elliptic problems with Neumann boundary conditions in Lipschitzand (semi-)convex domains. J Differential Equations, 2020, 268(6): 2510-2550 |