[1] Ammann K. Relative oscillation theory for Jacobi matrices extended. Oper Matrices, 2014, 8(1): 99-115 [2] Aizenman M, Warzel S.Random Operators: Disorder Effects on Quantum Spectra and Dynamics. Providence, RI: Amer Math Soc, 2015 [3] Christ M, Kiselev A. Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: Some optimal results. J Amer Math Soc, 1998, 11(4): 771-797 [4] Damanik D, Fillman J, Lukic M, Yessen W. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete Contin Dyn Syst Ser S, 2016, 9(4): 1009-1023 [5] Fu Z, Li X. Spectral type of a class of random Jacobi operators. J Math Phys, 2021, 62(11): 113506 [6] Germinet F, Kiselev A, Tcheremchantsev S. Transfer matrices and transport for Schrödinger operators. Ann Inst Fourier (Grenoble), 2004, 54(3): 787-830 [7] Kiselev A. Imbedded singular continuous spectrum for Schrödinger operators. J Amer Math Soc, 2005, 18(3): 571-603 [8] Kiselev A, Last Y, Simon B. Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators. Comm Math Phys, 1998, 194(1): 1-45 [9] Kiselev A, Remling C, Simon B.Effective perturbation methods for one-dimensional Schrödinger operators. J Differ Equ, 199, 151(2): 290-312 [10] Krüger H, Teschl G. Relative oscillation theory, zeros of the Wronskian,the spectral shift function. Comm Math Phys, 2009, 287(2): 613-640 [11] Liu W. Absence of singular continuous spectrum for perturbed discrete Schrödinger operators. J Math Anal Appl, 2019, 472(1): 1420-1429 [12] Lukic M. A Class of Schrödinger operators with decaying oscillatory potentials. Comm Math Phys, 2014, 326(2): 441-458 [13] Lukic M, Ong D C. Generalized Prüfer variables for perturbations of Jacobi and CMV matrices. J Math Anal Appl, 2016, 444(2): 1490-1514 [14] Naboko S N. Dense point spectra of Schrödinger and Dirac operators. Theor Math Phys, 1986, 68: 646-653 [15] Remling C. The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials. Comm Math Phys, 1998, 193(1): 151-170 [16] Simon B. Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators. Proc Am Math Soc, 1996, 124(11): 3361-3369 [17] Simon B. Some Schrödinger operators with dense point spectrum. Proc Amer Math Soc, 1997, 125(1): 203-208 [18] Simon B.Schrödinger operators in the twenty-first century//Fokas A, Grigoryan A, Kibble T, Zegarlinski B. Mathematical Physics 2000. London: Imp Coll Press, 2000: 283-288 [19] Simon B.Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory. Providence, RI: Amer Math Soc, 2005 [20] Teschl G.Jacobi Operators and Completely Integrable Nonlinear Lattices. Providence, RI: Amer Math Soc, 2000 [21] Von Neumann J, Wigner E P. Über merkwürdige diskrete Eigenwerte. Z Phys, 1929, 30: 465-467 |