数学物理学报(英文版) ›› 2024, Vol. 44 ›› Issue (2): 474-483.doi: 10.1007/s10473-024-0206-z

• • 上一篇    下一篇

A STABILITY RESULT FOR TRANSLATING SPACELIKE GRAPHS IN LORENTZ MANIFOLDS

Ya GAO, Jing MAO*, Chuanxi WU   

  1. Faculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062, China
  • 收稿日期:2022-11-20 修回日期:2023-01-08 出版日期:2024-04-25 发布日期:2024-04-16
  • 通讯作者: *Jing MAO, E-mail: jiner120@163.com
  • 作者简介:Ya GAO, E-mail: Echo-gaoya@outlook.com; Chuanxi WU, E-mail: cxwu@hubu.edu.cn
  • 基金资助:
    NSFC (11801496, 11926352), the Fok Ying-Tung Education Foundation (China), and the Hubei Key Laboratory of Applied Mathematics (Hubei University).

A STABILITY RESULT FOR TRANSLATING SPACELIKE GRAPHS IN LORENTZ MANIFOLDS

Ya GAO, Jing MAO*, Chuanxi WU   

  1. Faculty of Mathematics and Statistics, Key Laboratory of Applied Mathematics of Hubei Province, Hubei University, Wuhan 430062, China
  • Received:2022-11-20 Revised:2023-01-08 Online:2024-04-25 Published:2024-04-16
  • Contact: *Jing MAO, E-mail: jiner120@163.com
  • About author:Ya GAO, E-mail: Echo-gaoya@outlook.com; Chuanxi WU, E-mail: cxwu@hubu.edu.cn
  • Supported by:
    NSFC (11801496, 11926352), the Fok Ying-Tung Education Foundation (China), and the Hubei Key Laboratory of Applied Mathematics (Hubei University).

摘要: In this paper, we investigate spacelike graphs defined over a domain $\Omega\subset M^{n}$ in the Lorentz manifold $M^{n}\times\mathbb{R}$ with the metric $-{\rm d}s^{2}+\sigma$, where $M^{n}$ is a complete Riemannian $n$-manifold with the metric $\sigma$, $\Omega$ has piecewise smooth boundary, and $\mathbb{R}$ denotes the Euclidean $1$-space. We prove an interesting stability result for translating spacelike graphs in $M^{n}\times\mathbb{R}$ under a conformal transformation.

关键词: mean curvature flow, spacelike graphs, translating spacelike graphs, maximal spacelike graphs, constant mean curvature, Lorentz manifolds.

Abstract: In this paper, we investigate spacelike graphs defined over a domain $\Omega\subset M^{n}$ in the Lorentz manifold $M^{n}\times\mathbb{R}$ with the metric $-{\rm d}s^{2}+\sigma$, where $M^{n}$ is a complete Riemannian $n$-manifold with the metric $\sigma$, $\Omega$ has piecewise smooth boundary, and $\mathbb{R}$ denotes the Euclidean $1$-space. We prove an interesting stability result for translating spacelike graphs in $M^{n}\times\mathbb{R}$ under a conformal transformation.

Key words: mean curvature flow, spacelike graphs, translating spacelike graphs, maximal spacelike graphs, constant mean curvature, Lorentz manifolds.

中图分类号: 

  • 53C20