[1] Abresch U, Rosenberg H. A Hopf differential for constant mean curvature surfaces in $\mathbb{S}^{2}\times\mathbb{R}$ and $\mathbb{H}^{2}\times\mathbb{R}$. Acta Math, 2004, 193: 141-174 [2] Meeks W H III, Rosenberg H. Stable minimal surfaces in $M\times\mathbb{R}$. J Differential Geom, 2004, 68: 515-534 [3] Mazet L, Rodríguez M M, Rosenberg H. Periodic constant mean curvature surfaces in $\mathbb{H}^{2}\times\mathbb{R}$. Asian J Math, 2014, 18: 829-858 [4] Rosenberg H, Schulze F, Spruck J. The half-space property and entire positive minimal graphs in $M\times\mathbb{R}$. J Differential Geom, 2013, 95: 321-336 [5] Gao Y, Mao J, Song C L. Existence and uniqueness of solutions to the constant mean curvature equation with nonzero Neumann boundary data in product manifold $M^{n}\times\mathbb{R}$. Acta Mathematica Scientia, 2020, 40A: 1525-1536 [6] Shahriyari L. Translating graphs by mean curvature flow. Geom Dedicata, 2015, 175: 57-64 [7] Zhou H Y. The boundary behavior of domains with complete translating, minimal and CMC graphs in $N^{2}\times\mathbb{R}$. Sci China Math, 2019, 62: 585-596 [8] Colding T H, Minicozzi W P II. Estimates for parametric elliptic integrands. Int Math Res Not, 2002, 6: 291-297 [9] Colding T H, Minicozzi W P II. A Course in Minimal Surfaces. Providence, RI: Amer Math Soc, 2011 [10] Schoen R.Estimates for stable minimal surfaces in three-dimensional manifolds//Bombieri E. Seminar on Minimal Submanifolds. Princeton: Princeton Univ Press, 1983: 111-126 [11] Zhang S R. Curvature estimates for CMC surfaces in three dimensional manifolds. Math Z, 2015, 249: 613-624 [12] Schoen R, Simon L, Yau S T. Curvature estimates for minimal hypersurfaces. Acta Math, 1975, 134: 275-288 [13] Calabi E. Examples of Bernstein problems for some nonlinear equations. Proc Symp Pure Appl Math, 1970, 15: 223-230 [14] Cheng S Y, Yau S T. Maximal spacelike hypersurfacs in the Lorentz-Minkowski space. Ann of Math, 1976, 104: 407-419 [15] Chen L, Hu D D, Mao J, et al. Translating surfaces of the non-parametric mean curvature flow in Lorentz manifold $M^{2}\times\mathbb{R}$. Chinese Ann Math, Series B, 2021, 42: 297-310 [16] Angenent S B, Velázquez J J L. Asymptotic shape of cusp singularities in curve shortening. Duke Math J, 1995, 77: 71-110 [17] Angenent S B, Velázquez J J L. Degenerate neckpinches in mean curvature flow. J Reine Angew Math, 1997, 482: 15-66 [18] Li H Z. On complete maximal spacelike hypersurfaces in a Lorentzian manifold. Soochow J Math, 1997, 23: 79-89 |