[1] Altschuler S J, Wu L F. Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc Var, 1994, 2:101-111 [2] Chen Q, Qiu H B. Rigidity of self-shrinkers and translating solitons of mean curvature flows. Adv Math, 2016, 294:517-531 [3] Cheng Q -M, Ogata S. 2-dimensional complete self-shrinkers in $\mathbb{R}^3$. Math Z, 2016, 284:537-542 [4] Cheng Q -M, Ogata S, Wei G X. Rigidity theorems of λ-hypersurfaces. Comm Anal Geom, 2016, 24:45-58 [5] Cheng Q -M, Wei G X. Complete λ-surfaces in $\mathbb{R}^3$. arXiv:1807.06760v1[math.DG], 2018 [6] Cheng Q -M, Wei G X. Complete λ-hypersurfaces of the weighted volume-preserving mean curvature flow. Calc Var, 2018, 57(2):Art 32, DOI 10.1007/s00526-018-1303-4 [7] Clutterbuck J, Schnürer O, F Schulze. Stability of translating solutions to mean curvature flow. Calc Var, 2007, 29:281-293 [8] Gromov M. Isoperimetry of waists and concentration of maps. Geom Func Anal, 2003, 13:178-215 [9] Halldorsson H P. Helicoidal surfaces rotating/translating under the mean curvature flow. Geom Dedicata, 2013, 162:45-65 [10] Huisken G, Sinestrari C. Mean curvature flow singularities for mean convex surfaces. Calc Var, 1999, 8:1-14 [11] Ilmanen T. Elliptic regularization and partial regularity for motion by mean curvature. Mem Amer Math Soc, 1994, 108 [12] Li X X, Li X. On the Lagrangian angle and the Kähler angle of immersed surfaces in the complex plane C2. Acta Math Sci, 2019, 39B(6):1695-1712 [13] López R. Invariant surfaces in Euclidean space with a log-linear density. Adv Math, 2018, 339:285-309 [14] López R. Compact λ-translating solitons with boundary. Mediterranean J Math, 2018, 15(5):Art 196 [15] Martín F, Savas-Halilaj A, Smoczyk K. On the topology of translating solitons of the mean curvature flow. Calc Var, 2015, 54:2853-2882 [16] Minh N, Hieu D T. Ruled minimal surfaces in $\mathbb{R}^3$ with density ez. Pacific J Math, 2009, 243:277-285 [17] Morgan F. Manifolds with density. Notices Amer Math Soc, 2005, 52:853-858 [18] Pyo J. Compact translating solitons with non-empty planar boundary. Diff Geom App, 2016, 47:79-85 [19] Shahriyari L. Translating Graphs by Mean Curvature Flow[D]. The Johns Hopkins University, 2013 [20] Smith G. On complete embedded translating solitons of the mean curvature flow that area of finite genus. arXiv:1501.04149[math.DG], 2015 [21] Wang X-J. Convex solutions to the mean curvature flow. Ann Math, 2011, 173:1185-1239 [22] White B. Subsequent singularities in mean-convex mean curvature flow. Calc Var Pertial Diff Equ, 2015, 54(2):1457-1468 |