[1] Colin M, Colin T.On a quasilinear Zakharov system describing laser-plasma interactions. Differential and Integral Equations, 2004, 17(3/4): 297-330 [2] Masmoudi N, Nakanishi K.Energy convergence for singular limits of Zakharov type systems. Inventiones Mathematicae, 2008, 172(3): 535-583 [3] Shi Q H, Wang S.Klein-Gordon-Zakharov system in energy space: Blow-up profile and subsonic limit. Mathematical Methods in the Applied Sciences, 2019, 42(9): 3211-3221 [4] Xue J Q, Zhang Z Y.An analysis of implicit conservative difference solver for fractional Klein-Gordon- Zakharov system. Applied Mathematics and Computation, 2019, 348: 153-166 [5] Kumar A, Pankaj R D, Sachdeva J.A new six point finite difference scheme for nonlinear saves interaction model. Mathematical Theory and Modeling, 2013, 3(3): 53-59 [6] Dong X C, Bao W Z.An exponential integrator sine pseudospectral method for the Klein-Gordon-Zakharov system. SIAM Journal on Scientific Computing, 2013, 35(6): A2903-A2927 [7] Wang T C, Zhang L M, Jiang Y.Convergence of an efficient and compact finite difference scheme for the Klein-Gordon-Zakharov equation. Applied Mathematics and Computation, 2013, 221: 433-443 [8] Gao Y L, Mei L Q, Li R.Galerkin finite element methods for the generalized Klein-Gordon-Zakharov equations. Computers and Mathematics with Applications, 2017, 74(10): 2466-2484 [9] Feng K, Qin M Z.The Symplectic Methods for Computation of Hamiltonian Systems. Berlin: Springer, 1987: 1-37 [10] Liu L, Liao X H, Zhao C Y,Wang C B.Application of symplectic algorithms to dynamic astronomy. Journal of Astronomy, 1994, 18(3): 323-339 [11] Liu X S, Su L W, Ding P Z.Symplectic algorithm for use in computing the time-independent Schrüodinger equation. International Journal of Quantum Chemistry, 2002, 87(1): 1-11 [12] Herbst M, Varadi F, Ablowitz J.Symplectic methods for the nonlinear Schrüodinger equation. Mathematics and Computers in Simulation, 1994, 37(4/5): 353-369 [13] Liu L, Liao X H, Zhao C Y, Wang C B.Application of symplectic algorithm to dynamical astronomy (III). Chinese Astronomy and Astrophysics, 1994, 18(3): 323-339 [14] Shang Z J.KAM theorem of symplectic algorithms for Hamiltonian systems. Numerical Mathematic, 1999, 83: 477-496 [15] Marsden J E, Patrick G W, Shkoller S.Multi-symplectic geometry, variational integrators, and nonlinear PDEs. Communications in Mathematical Physics, 1998, 199(2): 351-395 [16] Bridges T J, Reich S.Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Physics Letters A, 2001, 284(4/5): 184-193 [17] Hong J L, Liu H Y, Sun G.The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs. Mathematics of Computation, 2005, 75(253): 167-181 [18] Liu H Y, Zhang K.Multi-symplectic Runge-Kutta-type methods for Hamiltonian wave equations. Journal of Numerical Analysis, 2006, 26: 252-271 [19] Cohen D, Owren B, Raynaud X.Multi-symplectic integration of the Camassa-Holm equation. Journal of Computational Physics, 2012, 227(11): 5492-5512 [20] Hong J L, Liu X Y, Li C.Multi-symplectic Runge-Kutta-Nystrm methods for nonlinear Schrüodinger equations with variable coefficients. Journal of Computational Physics, 2007, 226(2): 1968-1984 [21] Chen J B, Qin M Z, Tang Y F.Symplectic and multi-symplectic methods for the nonlinear Schrüodinger equation. Computers and Mathematics with Applications, 2002, 43(8/9): 1095-1106 [22] Islas A L, Schober C M.Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs. Mathematics and Computers in Simulation, 2004, 69(3/4): 290-303 [23] Moore B, Reich S.Backward error analysis for multi-symplectic integration methods. Numerische Mathematic, 2003, 95(4): 625-652 [24] Wang Y S, Wang B, Qin M Z.Local structure-preserving algorithms for partial differential equations. Science in China Series A Mathematics, 2008, 51(11): 2115-2136 [25] Cai J, Wang Y.Local structure-preserving algorithms for the “good” Boussinesq equation. Journal of Computational Physics, 2013, 239: 72-89 [26] Wang J L, Wang Y S.Local structure-preserving algorithms for the KdV equation. Journal of Computational Mathematics, 2017, 239(3): 289-318 [27] Hong Q, Wang J L, Wang Y S.A local energy-preserving scheme for Zakharov system. Chinese Physics B, 2018, 27(2): 020202 [28] Cai J X, Wang J L, Wang Y S.A local energy-preserving scheme for Klein-Gordon-Schrüodinger equations. Chinese Physics B, 2015, 24(5): 050205 [29] Romeo M, Jorge E, Macias D.An energy-preserving and efficient scheme for a double-fractional conservative Klein-Gordon-Zakharov system. Applied Numerical Mathematics, 2020, 158: 292-313 [30] Cai J X, Liang H.Explicit multisymplectic Fourier pseudospectral scheme for the Klein-Gordon-Zakharov equations. Chinese Physical Letter, 2012, 29(8): 1028-1032 [31] Reich S.Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. Journal of Computational Physics, 2000, 157(2): 473-499 [32] Wang Y S, Wang B, Qin M Z.Concatenating construction of the multisymplectic schemes for 2+1- dimensional sine-Gordon equation. Science in China, 2004, 47(1): 18-30 [33] Wang Y S, Wang B.Applications of the multi-symplectic Euler-box scheme. American Institute of Physics Conference Series, 2009, 2: 908-911 [34] Jiang C J.Multi-symplectic Preissmann scheme in finite interval and its complementary condition. Journal of University of Science and Technology of China (Chinese), 2002, 32(4): 403-411 [35] Wang J.Solitary wave propagation and interactions for the Klein-Gordon-Zakharov equations in plasma physics. Journal of Physics A Mathematical and Theoretical, 2009, 42(8): 085205 |