[1] Wang C P. Möbius geometry of submanifolds in Sn. Manuscripta Math, 1998, 96:517-534 [2] Nie C X, Wu C X. Space-like hypersurfaces with parallel conformal second fundamental forms in the conformal space. Acta Math Sinica, Chinese Series, 2008, 51(4):685-692 [3] Nie C X, Wu C X. Regular submanifolds in the conformal space Qpn. Chin Ann Math, 2012, 33:695-714 [4] Nie C X, Li T Z, He Y J, et al. Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space. Sci China Math, 2010, 53(4):953-965 [5] Li X X, Song H R. Regular space-like hypersurfaces in S1m+1 with parallel Blaschke tensors. J of Math, 2016, 36(6):1183-1200 [6] Li X X, Song H R. Regular space-like hypersurfaces in S1m+1 with parallel para-Blaschke tensors. Acta Mathematica Sinica, English Series, 2017, 33(10):1361-1381 [7] Li X X, Song H R. A complete classification of Blaschke parallel submanifolds with vanishing Möbius form. Sci China Math, 2017, 60:1281-1310 [8] Hu Z J, Li H Z. Classification of hypersurfaces with parallel Möbius second fundamental form in Sn+1. Sci China Ser A, 2004, 47(3):417-430 [9] Hu Z J, Li X X, Zhai S J. On the Blaschke isoparametric hypersurfaces in the unit sphere with three distinct Blaschke eigenvalues. Sci China Math, 2011, 54(10):2171-2194 [10] Hu Z J, Zhai S J. Submanifolds with parallel Möbius second fundamental form in the unit Sphere. Results in Mathematics, 2018, 73(3):46 pp [11] Li H Z, Liu H L, Wang C P, et al. Möbius isoparametric hypersurfaces in Sn+1 with two distinct principal curvatures. Acta Math Sinica, English Series, 2002, 18(3):437-446 [12] Li T Z, Wang C P. A note on Blaschke isoparametric hypersurfaces. Int J Math, 2014, 25(12):9 pp [13] Li X X, Zhang F Y. A classification of immersed hypersurfaces in spheres with parallel Blaschke tensors. Tohoku Math J, 2006, 58:581-597 [14] Li X X, Zhang F Y. Immersed hypersurfaces in the unit sphere Sm+1 with constant Blaschke eigenvalues. Acta Math Sinica, English Series, 2007, 23(3):533-548 [15] Liu H L, Wang C P, Zhao G S. Möbius isotropic submanifolds in Sn. Tohoku Math J, 2001, 53:553-569 [16] Nie C X. Blaschke Isoparametric Hypersurfaces in the Conformal Space Q1n+1, I. Acta Math Sinica, English Series, 2015, 31:1751-1758 [17] Li X X, Zhang F Y. On the Blaschke isoparametric hypersurfaces in the unit sphere. Acta Math Sinica, English Series, 2009, 25:657-678 [18] Zhai S J, Hu Z J, Wang C P. On submanifolds with parallel Möbius second fundamental form in the unit sphere. Int J Math, 2014, 25(6):37 pp [19] Li H Z, Wang C P. Möbius geometry of hypersurfaces with constant mean curvature and scalar curvature. Manus Math, 2003, 112:1-13 [20] Li X X, Zhang F Y. A Möbius characterization of submanifolds in real space forms with parallel mean curvature and constant scalar curvature. Manuscripta Math, 2005, 117:135-152 [21] Li H Z, Wang C P. Surfaces with vanishing Möbius form in Sn. Acta Math Sin, English Series, 2013, 19:671-678 |