[1] |
Tartar L. The compensated compactness method applied to systems of conservation laws//Syst Nonlin Part Differ Equ. Springer, 1983:263-285
|
[2] |
DiPerna R J. Convergence of the viscosity method for isentropic gas dynamics. Commun Math Phys, 1983, 91:1-30
|
[3] |
DiPerna R J. Convergence of approximate solutions to conservation laws. Arch Ration Mech Anal, 1983, 82:27-70
|
[4] |
Ding X X, Chen G Q, Luo P Z. A supplement to the papers convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (Ⅱ)-(Ⅲ). Acta Math Sci, 1989, 9(1):43-44
|
[5] |
Ding X X, Chen G Q, Luo P Z. Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics. Commun Math Phys Anal, 1989, 121:63-84
|
[6] |
Barles G, Souganidis P E. Convergence of approximation schemes for fully nonlinear second order equations. Asymototic Anal, 1991, 4(3):271-283
|
[7] |
Lions P L, Perthame B, Souganidis P E. Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Commun Pure Appl Math, 1996, 49(6):599-638
|
[8] |
Lions P L, Perthame B, Tadmor E. Kinetic formulation of the isentropic gas dynamics and p-systems. Commun Math Phys Anal, 1994, 163(2):415-431
|
[9] |
Huang F M, Wang Z. Convergence of viscosity solutions for isothermal gas dynamics. SIAM J Math Anal, 2002, 34(3):595-610
|
[10] |
Li J Q, Sheng W C, Zhang T, et al. Two-dimensional Riemann problems:from scalar conservation laws to compressible Euler equations. Acta Math Sci, 2009, 29(4):777-802
|
[11] |
Lu Y G. Convergence of the viscosity method for a nonstrictly hyperbolic system. Acta Math Sci, 1992, 12(2):230-239
|
[12] |
Frid H. Invariant regions under Lax-Friedrichs scheme for multidimensional systems of conservation laws. Discrete Contin Dyn Syst, 1995, 1(4):585-593
|
[13] |
Frid H. Maps of convex sets and invariant regions for finite-difference systems of conservation laws. Arch Ration Mech Anal, 2001, 160(3):245-269
|
[14] |
Tadmor E. A minimum entropy principle in the gas dynamics equations. Appl Numer Math, 1986, 2(3/5):211-219
|
[15] |
Chueh K N, Conley C C, Smoller J A. Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ Math J, 1977, 26(2):373-392
|
[16] |
Jiang W F, Wang Z. The invariant region for the equations of nonisentropic gas dynamics. ANZIAM J, 2017, 58(3/4):428-435
|
[17] |
Smoller J. Shock Waves and Reaction-Diffusion Equations. Springer, 2012
|