[1] Agarwal R P, Bohner M, Li T X, Zhang C H. Oscillation criteria for second-order dynamic equations on time scales. Appl Math Lett, 2014, 31:34-40 [2] Baculikova B. Oscillatory behavior of the second order general noncanonical differential equations. Appl Math Lett, 2020, 104:1-5 [3] Bohner M, Peterson A. Dynamic Equations on Time Scales:An Introduction with Applications. Birkhauser:Boston, 2001 [4] Deng X H, Wang Q R, Zhou Z. Oscillation criteria for second order nonlinear delay dynamic equations on time scales. Appl Math Comput, 2015, 269:834-840 [5] Erbe L, Peterson A, Saker S H. Hille and Nehari type criteria for third-order dynamic equations. J Math Anal Appl, 2007, 329(1):112-131 [6] Erbe L, Karpuz B, Peterson A C. Kamenev-type oscillation criteria for higher-order neutral delay dynamic equations. Int J Difference Equ, 2011, 6(1):1-16 [7] Federson M, Grau R, Mesquita J G, Toon E. Lyapunov stability for measure differential equations and dynamic equations on time scales. J Differential Equations, 2019, 267(7):4192-4233 [8] Grace S R, Agarwal R P, Zafer A. Oscillation of higher order nonlinear dynamic equations on time scales. Adv Difference Equ, 2012, 67(2012):1-18 [9] Hassan T S. Oscillation criteria for half-linear dynamic equations on time scales. J Math Anal Appl, 2008, 345(1):176-185 [10] Hassan T S. Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales. Appl Math Comput, 2011, 217(12):5285-5297 [11] Hassan T S, Kong Q K. Oscillation criteria for second oreder nonliner dynamic equations with p-Laplacian and damping. Acta Math Sci, 2013, 33B(4):975-988 [12] Hassan T S, Kong Q K. Oscillation criteria for higher-order nonlinear dynamic equations with Laplacians and a deviating argument on time scales. Math Methods Appl Sci, 2017, 40(11):4028-4039 [13] Karpuz B. Asymptotic behaviour of bounded solutions of a class of higher-order neutral dynamic equations. Appl Math Comput, 2009, 215(6):2174-2183 [14] Karpuz B. Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients. Electron J Qual Theory Differ Equ, 2009, 34:1-14 [15] Karpuz B. Sufficient conditions for the oscillation and asymptotic behaviour of higher-order dynamic equations of neutral type. Appl Math Comput, 2013, 221:453-462 [16] Karpuz B. Comparison tests for the asymptotic behaviour of higher-order dynamic equations of neutral type. Forum Math, 2015, 27(5):2759-2773 [17] Liu A L, Wu H W, Zhu S M, Ronald M M. Oscillation for nonautonomous neutral dynamic delay equations on time scales. Acta Math Sci, 2006, 26B(1):99-106 [18] Qiu Y C, Wang Q R. New oscillation results of second-order damped dynamic equations with p-Laplacian on time scales. Discrete Dyn Nat Soc, 2015, 709242:1-9 [19] Sahiner Y. Oscillation of second-order delay differential equations on time scales. Nonlinear Anal, 2005, 63:e1073-e1080 [20] Saker S H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J Comput Appl Math, 2006, 18(2):123-141 [21] Saker S H, Grace S R. Oscillation criteria for quasi-linear functional dynamic equations on time scales. Math Slovaca, 2012, 62(3):501-524 [22] Sun T X, Xi H J, Yu W Y. Asymptotic behaviors of higher order nonlinear dynamic equations on time scales. J Appl Math Comput, 2011, 37(1/2):177-192 [23] Wang Q R. Oscillation and asymptotics for second-order half-linear differential equations. Appl Math Comput, 2001, 122(2):253-266 [24] Wang Y H, Han Z L, Hou C X. Hille and Nehari type oscillation criteria for higher order dynamic equations on time scales. Differ Equ Appl, 2015, 7(3):277-302 [25] Wu X, Sun T X, Xi H J, Chen C H. Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales. Adv Differ Equ, 2013, 248(2013):1-19 [26] Wu X, Sun T X. Oscillation criteria for higher order nonlinear delay dynamic equations on time scales. Math Slovaca, 2016, 66(3):627-650 [27] Yang J, Liu S, Hou X K. Oscillation and existence of nonoscillatory solutions of forced higher-order neutral dynamic systems on time scales. Pure Appl Math (Xi an), 2009, 25:665-670 [28] Yang J S, Li T X. Oscillation for a class of second-order damped Emden-Fowler dynamic equations on time scales. Acta Math Sci, 2018, 38A(1):134-155 [29] Zhou Y, Ahmad B, Alsaedi A. Necessary and sufficient conditions for oscillation of second-order dynamic equations on time scales. Math Meth Appl Sci, 2019, 42(13):4488-4497 [30] Zhou Y. Nonoscillation of higher order neutral dynamic equations on time scales. Appl Math Lett, 2019, 94:204-209 |