[1] Al-Salman A, Al-Qassem H, Cheng L C, Pan Y. Lp bounds for the function of Marcinkiewicz. Math Res Lett, 2002, 9(5/6):697-700 [2] Benedek A, Calderón A, Panzone R. Convolution operators on Banach space value functions. Proc Nat Acd Sci USA, 1962, 48:356-365 [3] Cacciafesta F, D'Ancona P. Endpoint estimates and global existence for the nonlinear Dirac equation with potential. J Differential Equations, 2013, 254(5):2233-2260 [4] Cacciafesta F, Lucà R. Singular integrals with angular regularity. Proc Amer Math Soc, 2016, 144:3413-3418 [5] Chen J, Fan D, Pan Y. A note on a Marcinkiewicz integral operator. Math Nachr, 2001, 227:33-42. [6] Córdoba A. Singular integrals and maximal functions:the disk miltiplier revisited. Adv Math, 2016, 290:208-235 [7] D'Ancona P, Lucà R. On the regularity set and angular integrability for the Navier-Stokes equation. Arch Rational Mech Anal, 2016, 221:1255-1284 [8] Ding Y, Fan D, Pan Y. Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernel. Acta Math Sin (Engl Ser), 2000, 16:593-600 [9] Ding Y, Lu S, Yabuta K. A problem on rough Marcinkiewicz functions. J Austral Math Soc, 2001, 71:1-9 [10] Duoandikoetxea J, Rubio de Francia J L. Maximal and singular integral operators via Fourier transform estimates. Invent Math, 1986, 84:541-561 [11] Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119:799-839 [12] Fan D, Sato S. A note on the singular integrals associated with a variable surface of revolution. Math Inequal Appl, 2009, 12(2):441-454 [13] Fang D, Wang C. Weighted Strichartz estimates with angular regularity and their applications. Forum Math, 2011, 23:181-205 [14] Grafakos L, Stefanov A. Lp bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ Math J, 1998, 47(2):455-469 [15] Hofmann S. Weighted norm inequalities and vector valued inequalities for certain rough operators. Indiana Univ Math J, 1993, 42(1):1-14 [16] Hou X, Wu H. Limiting weak-type behaviors for certain Littlewood-Paley functions. Acta Math Sci, 2019, 39B(1):11-25 [17] Liu F. Weighted estimates for Marcinkiewicz integrals with applications to angular integrability. 2019, preprint. [18] Liu F, Fan D. Weighted estimates for rough singualr integrals with applications to angular integrability. Pacific J Math, 2019, 301(1):267-295 [19] Liu F, Wu H, Zhang D. Lp bounds for parametric Marcinkiewicz integrals with mixed homogeneity. Math Inequal Appl, 2015, 8(2):453-469 [20] Liu F, Liu R, Wu H. Weighted estiamtes for rough singular integrals with applications to angular integrablity, Ⅱ. Math Inequal Appl, 2020, 23(1):393-418 [21] Liu R, Liu F, Wu H. Mixed radial-angular integrability for rough singular integrals and maximal operators. Proc Amer Math Soc, 2020, 148(9):3943-3956 [22] Li W, Si Z, Yabuta K. Boundedness of singular integrals associated to surfaces of revolution on Triebel Lizorkin spaces. Forum Math, 2016, 28(1):57-75 [23] Stein E M. On the function of Littlewood-Paley, Lusin and Marcinkiewicz. Trans Amer Math Soc, 1958, 88:430-466 [24] Sterbenz J. Angular regularity and Strichartz estimates for the wave equation. Inter Math Res Not, 2005, 4:187-231 [25] Tao T. Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation. Comm Partial Differential Equations, 2000, 25(7/8):1471-1485 [26] Walsh T. On the function of Marcinkiewicz. Studia Math, 1972, 44:203-217 [27] Wu H. On Marcinkiewicz integral operators with rough kernels. Integral Equations Operator Theory, 2005, 52:285-298 [28] Wu H. Lp bounds for Marcinkiewicz integrals associated to surfaces of revolution. J Math Anal Appl, 2006, 321(2):811-827 [29] Wu H, Xu J. Rough Marcinkiewicz integrals associated to surfaces of revolution on product domains. Acta Math Sci, 2009, 29B(2):294-304 |