[1] Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods Fundamentals in Single Domains. Berlin:Springer-Verlag, 2006 [2] Babuska I, Nobile F, Tempone R. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal, 2007, 45:1005-1034 [3] Fishman G S. Monte Carlo, Concepts, Algorithms, and Applications. New York:Springer, 1996 [4] Fox B L. Strategies for Quasi-Monte Carlo. New York:Springer, 1999 [5] Ganapathysubramanian B and Zabaras N. Sparse grid collocation schemes for stochastic natural convection problems. J Comput Phys, 2007, 225:652-685 [6] Ghanem R G, Spanos P. Stochastic Finite Elements:A Spectral Approach. Dover, Revised, 2012 [7] Gottlieb D, Xiu D B. Galerkin method for wave equations with uncertain coefficients. Commun Comput Phys, 2008, 3:505-518 [8] Tatang M, McRae G. Direct Treatment of Uncertainty in Models of Reaction and Transport. MIT Tech Rep, 1994 [9] Liu W, Belytschko T, Mani A. Probabilistic finite elements for nonlinear structural dynamics. Comput Methods Appl Mech Eng, 1986, 56:61-81 [10] Shen J, Tang T, Wang L L. Spectral Methods:Algorithms, Analysis and Applications (Springer Series in Computational Mathematics). New York:Springer, 2011 [11] Tang T, Zhou T. Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with a random wave speed. Commun Comput Phys, 2010, 8:226-248 [12] Xiu D B. Efficient collocational approach for parametric uncertainty analysis. Commun Comput Phys, 2007, 2:293-309 [13] Xiu D B. Numerical Methods for Stochastic Computations. New Jersey:Princeton University Press, 2010 [14] Wiener N. The homogeneous chaos. Amer J Math, 1938, 60:897-936 [15] Xiu D B. Fast numerical methods for stochastic computations:A review. Commun Comput Phys, 2009, 5:242-272 [16] Zhang G N, Gunzburger M. Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data. SIAM J Numer Anal, 2012, 50:1922-1940 [17] Galindo D, Jantsch P, Webster C G, Zhang G N. Accelerating stochastic collocation methods for partial differential equations with random input data. SIAM/ASA J Uncertainty Quantification, 2015, 4:1111- 1137 [18] Chen L P, Zheng B, Lin G, Voulgarakis N. A two-level stochastic collocation method for semilinear elliptic equations with random cofficients. J Comput Appl Math, 2017, 315:195-207 [19] Hu J W, Jin S. A stochastic Galerkin method for the Boltzmann equation with un certainty. J Comput Phys, 2016, 315:150-168 [20] Chauviere C, Hesthaven J S, Lurati L. Computational modeling of uncertainty in time-domain electromagnetics. SIAM J Sci Comput, 2006, 28(2):751-775 [21] Benner P, Schneider J. Uncertainty quantification for Maxwell equations using stochastic collocation and model order reduction. Int J Uncertain Quantif, 2015, 5(3):195-208 [22] Horsin T, Stratis I, Yannacopoulos A. On the approximate controllability of the stochastic Maxwell equations. IMA J Math Control Inform, 2010, 27:103-118 [23] Liu H, Wu Q L, Cournede P H. Research on the effects of different sampling algorithm on Sobol sensitivity analysis. Acta Math Sci, 2018, 38A(2):372-384 [24] Duan L Q. The Gelfand approximations on generalized Besov class $B_{p,Q}\Omega$ in the deterministic and Monte Carlo settings. Acta Math Sci, 2012, 32A(1):148-160 [25] Hong J L, Ji L H, Zhang L Y. A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise. J Comput Phys, 2014, 268:255-268 [26] Chauviere C, Hesthaven J S, Lurati L. Computational modeling of uncertainty in time-domain electromagnetics. SIAM J Sci Comput, 2006, 28(2):751-775 [27] Xiu D B, Karniadakis G E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput, 2002, 24(2):619-644 [28] Filbet F. On deterministic approximation of the Boltzmann equation in a bounded domain. Multiscale Model Simul, 2012, 10:792-817 [30] Pettersson M P, Iaccarino G, Nordstrom J. Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Springer, 2015 [30] Markowich P A, Ringhofer C, Schmeiser C. Semiconductor Equations. New York:Springer Verlag Wien, 1990 [31] Hu J, Jin S, Shu R. A stochastic Galerkin method for the Fokker-Planck-Landau equation with random uncertainties. Proc. 16th International Conference on Hyperbolic Problems, 2016, 237:1-19 [32] Jin S, Lu H. An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings. J Comput Phys, 2017, 334:182-206 [33] Jin S, Shu R. A stochastic asymptotic-preserving scheme for a kinetic-fluid model for disperse two-phase flows with uncertainty. J Comput Phys, 2017, 335:905-924 [34] Jichun Li, Zhiwei Fang, Guang Lin. Regularity analysis of metamaterial Maxwell's equations with random coefficients and initial conditions. Comput Methods Appl Mech Engrg, 2018, 335:24-51 |