[1] Ward K, Aletras A, Balaban R, et al. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87.
[2] Zhou J, Van Zijl P C. Chemical exchange saturation transfer imaging and spectroscopy[J]. Prog Nucl Magn Reson Spectrosc, 2006, 48(2-3): 109-136.
[3] Sherry A D, Woods M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging[J]. Annu Rev Biomed Eng, 2008, 10: 391-411.
[4] Vinogradov E, Sherry A D, Lenkinski R E, et al. CEST: From basic principles to applications, challenges and opportunities[J]. J Magn Reson, 2013, 229: 155-172.
[5] Kogan F, Hariharan H, Reddy R, et al. Chemical exchange saturation transfer (CEST) imaging: Description of technique and potential clinical applications[J]. Curr Radiol Rep, 2013, 1(2): 102-114.
[6] Solomon I. Relaxation processes in a system of two spins[J]. Phys Rev, 1955, 99(2): 559-565.
[7] Jin T, Wang P, Zong X, et al. MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear Overhauser effect at 9.4 T[J]. Magn Reson Med, 2013, 69(3): 760-770.
[8] Ling W, Regatte R R, Navon G, et al. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST)[J]. Proc Natl Acad Sci USA, 2008, 105(7): 2 266-2 270.
[9] Jones C K, Huang A, Xu J, et al. Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7 T[J]. NeuroImage, 2013, 77: 114-124.
[10] Cai K, Haris M, Singh A, et al. Magnetic resonance imaging of glutamate [J]. Nat Med, 2012, 18(2): 302-306.
[11] Hua J, Jones C K, Blakeley J, et al. Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain[J]. Magn Reson Med, 2007, 58(4): 786-793.
[12] Van Zijl P C, Zhou J, Mori N, et al. Mechanism of magnetization transfer during on-resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids[J]. Magn Reson Med, 2003, 49(3): 440-449.
[13] Zhou J, Blakeley J O, Hua J, et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging[J]. Magn Reson Med, 2008, 60(4): 842-849.
[14] Zhou J, Hong X, Zhao X, et al. APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses[J]. Magn Reson Med, 2013, 70(2): 320-327.
[15] Mougin O E, Coxon R C, Pitiot A, et al. Magnetization transfer phenomenon in the human brain at 7 T[J]. NeuroImage, 2010, 49(1): 272-281.
[16] Liu D, Zhou J, Xue R, Zuo Z, et al. Quantitative characterization of nuclear Overhauser enhancement and amide proton transfer effects in the human brain at 7 T[J]. Magn Reson Med, 2013, 70(4): 1 070-1 081.
[17] Zaiss M, Kunz P, Goerke S, et al. MR imaging of protein folding in vitro employing Nuclear-Overhauser-mediated saturation transfer[J]. NMR Biomed, 2013, 26(12): 1 815-1 822.
[18] Behar K L, Rothman D L, Spencer D D, et al. Analysis of macromolecule resonances in 1H NMR spectra of human brain[J]. Magn Reson Med, 1994, 32(3): 294-302.
[19] Lu J, Zhou J, Cai C, et al. Observation of true and pseudo NOE signals using CEST-MRI and CEST-MRS sequences with and without lipid suppression[J]. Magn Reson Med, 2014, doi:10.1002/mrm.25277.
[20] Jones C K, Polders D, Hua J, et al. In vivo three-dimensional whole-brain pulsed steady state chemical exchange saturation transfer at 7 T[J]. Magn Reson Med, 2012, 67(6): 1 579-1 589.
[21] Dewey B. Simulation and Optimization of Pulsed Chemical Exchange Saturation Transfer for Clinical Application at 3 T [D]. Nashville, Tennessee, USA: Vanderbilt University, 2013. |