Chinese Journal of Magnetic Resonance ›› 2025, Vol. 42 ›› Issue (1): 22-33.doi: 10.11938/cjmr20243120cstr: 32225.14.cjmr20243120
• Articles • Previous Articles Next Articles
SHEN Zhiqiang1,2, DENG Yabo2, YANG Peiju1, HU Xiaoxue1, HUANG Xiaojuan1, XU Chuanzhi1,*(), SONG Huanling1,#(
)
Received:
2024-06-19
Published:
2025-03-05
Online:
2024-08-26
Contact:
*Tel: 0931-4968131, E-mail: xucz@licp.cas.cn;# Tel: 0931-4968126, E-mail: songhl@licp.cas.cn.
CLC Number:
SHEN Zhiqiang, DENG Yabo, YANG Peiju, HU Xiaoxue, HUANG Xiaojuan, XU Chuanzhi, SONG Huanling. Design and Application of an in situ NMR Device for Light-Induced Reaction Systems[J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 22-33.
Fig. 7
Thermal map of the dynamic nuclear polarization (DNP) phenomenon (c) of 6 photosensitizers (a) and 9 fluorinated aromatic compounds (b) under light conditions. * When the color is white, the magnification value fluctuates around 0.8~1.2, with no significant oversensitization. The closer the color value is to 5 (red), the greater the magnification of the signal strength and the more pronounced the supersensitization phenomenon.
Fig. 8
Effects of different concentrations of riboflavin on photochemically induced dynamic nuclear polarization of 4-fluorophenol in the dark and under light conditions. (a) Sensitization effect curves of different concentrations of riboflavin; (b) sensitization effect NMR spectra and NMR sample tubes under light conditions
Table 1
Signal-to-noise ratio (S/N) of NMR signals of different concentrations of riboflavin mixed with 4-fluorophenol in the dark and under light conditions
编号 | 色素浓度/(mg/mL) | S/N(黑暗) | S/N(光照) |
---|---|---|---|
1 | 0.00015 | 5.17±2.0304 | 14.68±5.1055 |
2 | 0.00060 | 4.42±3.0952 | 39.40±3.5547 |
3 | 0.00117 | 3.90±3.1919 | 54.47±4.6659 |
4 | 0.00170 | 3.46±2.0815 | 77.08±2.7838 |
5 | 0.00268 | 3.62±4.1743 | 81.00±3.1994 |
Fig. 9
Effects of different concentrations of eosin Y on the photochemically induced dynamic nuclear polarization of 4-fluorophenol in the dark and under light conditions. (a) Sensitization effect curves of different concentrations of eosin Y; (b) sensitization effect NMR spectra and NMR sample tubes under light conditions
Table 2
Signal-to-noise ratio values (S/N) of NMR signals of different concentrations of eosin Y mixed with 4-fluorophenol in the dark and under light conditions
编号 | 色素浓度/(mg/mL) | S/N(黑暗) | S/N(光照) |
---|---|---|---|
1 | 0.00015 | 5.51±3.1228 | 7.16±3.3184 |
2 | 0.00060 | 5.13±2.0593 | 10.31±3.5414 |
3 | 0.00117 | 4.54±2.5472 | 18.59±2.6619 |
4 | 0.00170 | 5.26±2.2379 | 21.19±2.4043 |
5 | 0.00268 | 4.45±2.2104 | 24.17±1.5945 |
Fig. 10
Effect of surface-treated NMR tubes on photochemically induced dynamic nuclear polarization. (a) histogram of the trend of the effect of paint spraying on sensitization; (b) picture of paint sprayed NMR tubes; (c) histogram of the trend of the effect of sandblasting on sensitization; (d) picture of sandblasted NMR tubes
Table 3
Effect of sensitization on NMR sample tubes with paint treatment (left) and sandblasting (right)
增敏倍率 | S/N值(黑暗) | S/N值(光照) | 增敏倍率 | S/N值(黑暗) | S/N值(光照) | |||
---|---|---|---|---|---|---|---|---|
透明 | 3.65 | 5.26 | 19.18 | 透明 | 3.65 | 5.26 | 19.18 | |
漆L | 2.24 | 4.82 | 10.79 | 喷砂L | 2.34 | 4.78 | 11.18 | |
漆M | 1.99 | 5.36 | 10.66 | 喷砂M | 2.08 | 4.50 | 9.36 | |
漆H | 2.26 | 4.57 | 10.31 | 喷砂H | 1.88 | 4.09 | 7.67 |
Fig. 11
Validation of synergistic work of in situ photoreactor and NMR spectrometer, and spectra of local signal changes before and after the reaction. (a) Reaction course 1H NMR iterogram of the photopromoted ring-opening reaction; (b) localized 1H NMR signal change stack plot; (c) localized signal change spectrum before and after the reaction
[1] |
MANOILOV K Y, VERKHUSHA V V, SHCHERBAKOVA M D. A guide to the optogenetic regulation of endogenous molecules[J]. Nat Methods 2021, 18(9): 1027-1037.
doi: 10.1038/s41592-021-01240-1 pmid: 34446923 |
[2] | BRECHUN K E, ARNDT K M. WOOLLEY G A. Strategies for the photo-control of endogenous protein activity[J]. Curr Opin Struct Biol, 2017, 45: 53-58. |
[3] | ZHANG F, WANG X, LIU H, et al. Recent advances and applications of semiconductor photocatalytic technology[J]. Appl Sci, 2019, 9(12): 2489. |
[4] | XIONG S, YIN X, WANG Q, et al. Photoacoustic spectroscopy gas detection technology research progress[J]. Appl Spectrosc, 2023, 78(2): 135-158. |
[5] | NOLTE D D. Coherent light scattering from cellular dynamics in living tissues[J]. Rep Prog Phys, 2024, 87(3): 036601. |
[6] | RAPP T L, DEFOREST C A. Targeting drug delivery with light: A highly focused approach[J]. Adv Drug Deliv Rev, 2021, 171: 94-107. |
[7] | SUN C L, WANG C, BOULATOV R. Applications of photoswitches in the storage of solar energy[J]. Chem Photo Chem, 2019, 3(6): 268-283. |
[8] |
MILLS A, ROURKE O. In situ, simultaneous irradiation and monitoring of a photocatalyzed organic oxidation reaction in a TiO2-coated NMR tube[J]. J Org Chem, 2015, 80 (20): 10342-10345.
doi: 10.1021/acs.joc.5b01001 pmid: 26414339 |
[9] | LIAO Y X, GENG F S, SHEN M, et al. Solid-state NMR study on sodium intercalation at low voltage window for Na3V2(PO4)3 as an anode[J]. Magn Reson Lett, 2024, 4(2): 100093. |
[10] | WANG H, TAO Z Q, JIANG G S, et al. In situ investigation of HdeA in bacterial outer membrane vesicles using NMR spectroscopy[J]. Chinese J Magn Reson, 2024, 41(1): 1-8. |
王欢, 陶志清, 姜国胜, 等. HdeA在细菌外膜囊泡环境下的原位NMR研究[J]. 波谱学杂志, 2024, 41(1): 1-8.
doi: 10.11938/cjmr20233069 |
|
[11] | JIANG Y, ZHAO M, PENG Z Q, et al. Progress in in-situ electrochemical nuclear magnetic resonance for battery research[J]. Magn Reson Lett, 2024, 4(2): 200099. |
[12] | BRAMHAM J E, GOLOVANOV A P. Sample illumination device facilitates in situ lightcoupled NMR spectroscopy without fibre optics[J]. Commun Chem, 2022, 5(1): 90. |
[13] | PAULULAT T, RABE M, BERDNIKOVA D, et al. Modification of an NMR probe for monitoring of photoreactions[J]. J Magn Reson, 2021, 327: 106990 |
[14] | LIU W Q, SONG Y H, WANG X L, et al. In operando nuclear magnetic resonance spectroscopy study on photocatalytic methanol reforming[J]. Chinese J Magn Reson, 2019 36(3): 298-308. |
刘文卿, 宋艳红, 王雪璐, 等. 光催化甲醇重整机理的原位核磁共振研究[J]. 波谱学杂志, 2019 36(3): 298-308.
doi: 10.11938/cjmr20182680 |
|
[15] | WANG R D, XU B B, SONG Y H, et al. Methanol-water interaction in photocatalytic methanol reforming-An operando NMR study[J]. Chinese J Magn Reson, 2021, 38(1): 43-57. |
王睿迪, 徐贝贝, 宋艳红, 等. 原位核磁共振技术研究光催化甲醇重整过程中甲醇与水的相互作用[J]. 波谱学杂志, 2021, 38(1): 43-57.
doi: 10.11938/cjmr20202818 |
|
[16] | YE M, YANG Y N, ZHANG R, et al. Effects of co-catalysts and wavelength of light on the products of photocatalytic methanol reforming: an operando NMR study[J]. Chinese J Magn Reson, 2019, 36(4): 490-501. |
叶曼, 杨以宁, 张燃, 等. 原位核磁共振技术研究共催化剂类型以及光照波长对甲醇光催化重整产物的影响[J]. 波谱学杂志, 2019, 36(4): 490-501.
doi: 10.11938/cjmr20192727 |
|
[17] | NIU X X, BAI Z J, YANG Y, et al. A quantitative study of photocatalytic reduction of Cr(VI) by Operando low-field NMR relaxometry[J]. Chinese J Magn Reson, 2021, 38(3): 403-413. |
牛星星, 白志杰, 杨翼, 等. 原位低场核磁共振弛豫法定量监测光催化Cr (VI) 还原反应[J]. 波谱学杂志, 2021, 38(3): 403-413.
doi: 10.11938/cjmr20202815 |
|
[18] | XU B B, ZHOU M, MAN Y, et al. Cooperative motion in water-methanol clusters controls the reaction rates of heterogeneous photocatalytic reactions[J]. J Am Chem Soc, 2021, 143: 10940-10947 |
[19] | XU B B, ZHOU M, RAN Z, et al. Solvent water controls photocatalytic methanol reforming[J]. J Phys Chem Lett, 2020, 11: 3738-3744. |
[20] |
WANG X L, LIU W Q, YanYan Y, et al. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions[J]. Nat Commun, 2016, 7: 11918.
doi: 10.1038/ncomms11918 pmid: 27311326 |
[21] | OTOKIKO T, SHUJI K, SHIGEORI T. Cycloaddition of pyridinium methylides with electron-deficient olefins and silica-gel mediated elimination of pyridines from the cycloadducts: A new method of alkylation or hydroalkylidenation of olefins[J]. B Chem Soc Jpn, 1987, 60(4): 1489-1495. |
[1] | MENG Jingxin, WANG Yuanjun. Research Progress on Tractography of Superficial White Matter Based on Diffusion Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 205-220. |
[2] | CHEN Jingcong, RAN Fengwei, ZHANG Haowei, LIU Ying. Optimization Methodology for Meningioma and Acoustic Neuroma Detection Model Based on DCGAN [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 117-129. |
[3] | SUN Haoyun, WANG Lijia. Application of 3D ELD_MobileNetV2 Incorporating Attention Mechanism and Dilated Convolution in Hepatic Nodules Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 130-142. |
[4] | WEI Zhihong, KONG Xudong, KONG Yan, YAN Shiju, DING Yang, WEI Xianding, KONG Dong, YANG Bo. Application of Generative Adversarial Networks Based on Global and Local Feature Information in Hippocampus Segmentation [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 143-153. |
[5] | CAO Fei, XU Qianqian, CHEN Hao, ZU Jie, LI Xiaowen, TIAN Jin, BAO Lei. An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 154-163. |
[6] | CHEN Bo, LIU Quan, MA Lei, CHEN Shunian, JIA Yaqi, ZHU Bin, GUO Junwang. Simulink-based Simulation Study of Continuous Wave Electron Paramagnetic Resonance Signal Processing and Detection [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 174-183. |
[7] | GU Jiajia, WANG Yuanjun. Hybrid Attention and Multiscale Module for Alzheimer's Disease Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 103-116. |
[8] | ZUO Bingyu, SHI Lili, SONG Jia, ZHAO Yang, LI Qian. Application of Estrogen and Tumor Markers Combined with DCE-MRI in Diagnosis and Clinical Staging of Cervical Cancer [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 164-173. |
[9] | WU Zhaobo, WANG Jiaxin, LIU Wanzhen, CHENG Xin, WEI Wei, HUANG Zhen, CHEN Fang, ZHANG Zhi, LIU Chaoyang. Design and Development of Key Components for a Low-Field Solid-State NMR Magic Angle Spinning (MAS) Probe [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[10] | ZHAO Jing, BAO Qingjia, ZHANG Zhi, CHEN Gang, WU Zhaobo, HUANG Zhen, LIU Chaoyang. NMR Environmental Noise Suppression Method Based on Multi-Channel Parallel Reception and Transformer Reconstruction [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[11] | WEN Yulin, LI Gaiying, WU Yupen, LI Jianqi. Optimization of DW-MRS Acquisition Protocol: The Impact of Gating and Cycling Modes [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[12] | JIANG Chaochao, YAO Shouquan, XU Juncheng, JIANG Yu. Design of the Broadband Magnetic Resonance Microcoil [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[13] | LI Junyao, LI Chengkang, ZHAO Feng, WANG Chen, WANG Fang, KANG Songbai, WANG Pengfei, MEI Ganghua, MING Gang. Research on Pressure Compensation for the Rubidium Atomic Clock Working in Atmospheric Environment [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 96-102. |
[14] | SONG Yanzuo, YU Huiyuan, CHEN Jingzhi, SHEN Yue, XU Xianneng, XU Zheng. Topology Optimization Method of Magnetic Resonance Logging Sensor Magnet Structure [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 80-88. |
[15] | LIU Hongbing, LIU Huili, LUO Liting, SUN Lijuan, CHEN Lei. Identification and Structural Characterization of an Unknown Trace Degradation Impurity in Cabazitaxel Injection by LC-DAD-SPE-NMR/MS [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 34-46. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||