Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (2): 123-132.doi: 10.11938/cjmr20212946
• Articles • Previous Articles Next Articles
Shu ZENG1,2,Shu-tao XU1,*(),Ying-xu WEI1,Zhong-min LIU1,*()
Received:
2021-09-08
Online:
2022-06-05
Published:
2021-09-22
Contact:
Shu-tao XU,Zhong-min LIU
E-mail:xushutao@dicp.ac.cn;liuzm@dicp.ac.cn
CLC Number:
Shu ZENG, Shu-tao XU, Ying-xu WEI, Zhong-min LIU. Investigation of the Ethanol Dehydration to Ethene Reaction on H-SSZ-13 Molecular Sieve by in situ Solid-state NMR Spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 123-132.
1 |
FARRELL A E, PLEVIN R J, TURNER B T, et al Ethanol can contribute to energy and environmental goals[J]. Science, 2006, 311 (5760):506-508.
doi: 10.1126/science.1121416 |
2 |
TIAN P, WEI Y X, YE M, et al Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catal, 2015, 5 (3):1922-1938.
doi: 10.1021/acscatal.5b00007 |
3 | BI J D, GUO X W, LIU M, et al High effective dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalysts[J]. Cataly Today, 2010, 149 (1, 2):143-147. |
4 |
ARAI H, SAITOY, YONEDA Y Ethanol dehydration on alumina catalysts Ⅱ. The infrared study on adsorption of diethyl ether over alumina[J]. J Catal, 1968, 10, 128-133.
doi: 10.1016/0021-9517(68)90164-4 |
5 |
GAYUBO A G, TARRIO A M, AGUAYO A T, et al Kinetic modelling of the transformation of aqueous ethanol into hydrocarbons on a HZSM-5 zeolite[J]. Ind Eng Chem Res, 2001, 40 (16):3467-3474.
doi: 10.1021/ie001115e |
6 |
KWAK J H, MEI D H, PEDEN C H F, et al (100) facets of γ-Al2O3: The active surfaces for alcohol dehydration reactions[J]. Catal Lett, 2011, 141 (5):649-655.
doi: 10.1007/s10562-010-0496-8 |
7 | TRET'YAKOV V F, MAKARFI Y I, TRET'YAKOV K V, et al The catalytic conversion of bioethanol to hydrocarbon fuel: A review and study[J]. Catalysis in Industry, 2011, 2 (4):402-420. |
8 | SONG Z X, TAKAHASHI A, NAKAMURA I, et al Phosphorus-modified ZSM-5 for conversion of ethanol to propylene[J]. Appl Catals A-Gen, 2010, 384 (1, 2):201-205. |
9 |
DAI W L, SUN X M, TANG B, et al Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13[J]. J Catal, 2014, 314, 10-20.
doi: 10.1016/j.jcat.2014.03.006 |
10 | XU S T, ZHI Y C, HAN J F, et al Advances in catalysis for methanol-to-olefins conversion[J]. Adv Catal, 2017, 61, 37-122. |
11 |
ALEXOPOULOS K, JOHN M, VAN DER BORGHT K, et al DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5[J]. J Catal, 2016, 339, 173-185.
doi: 10.1016/j.jcat.2016.04.020 |
12 |
KIM S, ROBICHAUD D J, BECKHAM G T, et al Ethanol dehydration in HZSM-5 studied by density functional theory: Evidence for a concerted process[J]. J Phys Chem A, 2015, 119 (15):3604-3614.
doi: 10.1021/jp513024z |
13 |
PHUNG T K, BUSCA G Diethyl ether cracking and ethanol dehydration: Acid catalysis and reaction paths[J]. Chem Eng J, 2015, 272, 92-101.
doi: 10.1016/j.cej.2015.03.008 |
14 |
CHIANG H, BHAN A Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites[J]. J Catal, 2010, 271 (2):251-261.
doi: 10.1016/j.jcat.2010.01.021 |
15 |
ZHANG M H, YU Y Z Dehydration of ethanol to ethylene[J]. Ind Eng Chem Res, 2013, 52 (28):9505-9514.
doi: 10.1021/ie401157c |
16 |
SUN J, WANG Y Recent advances in catalytic conversion of ethanol to chemicals[J]. Acs Catal, 2014, 4 (4):1078-1090.
doi: 10.1021/cs4011343 |
17 |
NGUYEN T M, LE VAN MAO R Conversion of ethanol in aqueous solution over ZSM-5 zeolites: Study of the reaction network[J]. Appl Catal, 1990, 58 (1):119-129.
doi: 10.1016/S0166-9834(00)82282-4 |
18 |
KONDO J N, ITO K, YODA E, et al An ethoxy intermediate in ethanol dehydration on bronsted acid sites in zeolite[J]. J Phy Chem B, 2005, 109 (21):10969-10972.
doi: 10.1021/jp050721q |
19 |
WANG W, JIAO J, JIANG Y J, et al Formation and decomposition of surface ethoxy species on acidic zeolite Y[J]. Chem Phys Chem, 2005, 6 (8):1467-1469.
doi: 10.1002/cphc.200500262 |
20 |
ZHOU X, WANG C, CHU Y Y, et al Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite[J]. Nat Commun, 2019, 10 (1):1961-1961.
doi: 10.1038/s41467-019-09956-7 |
21 |
ZENG S, LI J J, WANG N, et al Investigation of ethanol conversion on H-ZSM-5 zeolite by in situ solid-state NMR[J]. Energ Fuel, 2021, 35 (15):12319-12328.
doi: 10.1021/acs.energyfuels.1c02151 |
22 |
MOWER P, FRILETTER V, MAATMAN R, et al Catalysis by crystalline aluminosilicates Ⅱ. Molecular-shape selective reactions[J]. J Catal, 1962, 1, 307-312.
doi: 10.1016/0021-9517(62)90058-1 |
23 |
CSICSERY S M Shape-selective catalysis in zeolites[J]. Zeolites, 1984, 4 (3):202-213.
doi: 10.1016/0144-2449(84)90024-1 |
24 | DEGNAN T The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries[J]. J Catal, 2003, 216 (1, 2):32-46. |
25 |
TEKETEL S, LUNDEGARRD L F, SKISTAD W, et al Morphology-induced shape selectivity in zeolite catalysis[J]. J Catal, 2015, 327, 22-32.
doi: 10.1016/j.jcat.2015.03.013 |
26 |
WU P F, YANG M, SUN L J, et al Synthesis of nanosized SAPO-34 with the assistance of bifunctional amine and seeds[J]. Chem Commun, 2018, 54 (79):11160-11163.
doi: 10.1039/C8CC05871G |
27 | LI J Z, WEI Y X, CHEN J R, et al Cavity controls the selectivity: insights of confinement effects on MTO reaction[J]. ACS Catal, 2014, 5 (2):661-665. |
28 |
ZHANG W N, CHEN J R, XU S T, et al Methanol to olefins reaction over cavity-type zeolite: Cavity controls the critical intermediates and product selectivity[J]. ACS Catal, 2018, 8 (12):10950-10963.
doi: 10.1021/acscatal.8b02164 |
29 |
ZHOU Y, QI L, WEI Y, et al Comparative investigation of the MTH induction reaction over HZSM-5 and HSAPO-34 catalysts[J]. Mol Catal, 2017, 433, 20-27.
doi: 10.1016/j.mcat.2017.02.018 |
30 |
WANG L Y, ZHU D L, WANG J, et al Embryonic zeolite-assisted synthesis of SSZ-13 with superior efficiency and their excellent catalytic performance[J]. J Mater Chem A, 2021, 9, 15238-15245.
doi: 10.1039/D1TA01452H |
31 | YANG Y N, WANG X L, YAO Y F The effects of reaction environment on photocatalytic methanol reforming studied by operando nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2020, 37 (1):104-113. |
杨以宁, 王雪路, 姚叶峰 原位核磁共振技术研究反应环境对光催化甲醇重整过程的影响[J]. 波谱学杂志, 2020, 37 (1):104-113. | |
32 | LIU W Q, SONG Y H, WANG X L, et al In operando nuclear magnetic resonance spectroscopy study on photocatalytic methanol reforming[J]. Chinese J Magn Reson, 2019, 36 (3):298-308. |
刘文卿, 宋艳红, 王雪璐, 等 光催化甲醇重整机理的原位核磁共振研究[J]. 波谱学杂志, 2019, 36 (3):298-308. | |
33 |
HUNGER M, HORVATH T Conversion of propan-2-ol on zeolite LaNaY and HY investigated by gas chromatography and in situ MAS NMR spectroscopy under continuous-flow conditions[J]. J Catal, 1997, 167 (1):187-197.
doi: 10.1006/jcat.1997.1562 |
34 | WANG W, JIANG Y J, HUNGER M Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy[J]. Catal Today, 2006, 113 (1, 2):102-114. |
35 |
HAW J F, NICHOLAS J B, SONG W G, et al Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5[J]. J Am Chem Soc, 2000, 122 (19):4763-4775.
doi: 10.1021/ja994103x |
36 |
THURBER K R, TYCKO R Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder[J]. J Magn Reson, 2009, 196 (1):84-87.
doi: 10.1016/j.jmr.2008.09.019 |
37 |
HOU G J, YAN S, TREBOSC J, et al Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids[J]. J Magn Reson, 2013, 232, 18-30.
doi: 10.1016/j.jmr.2013.04.009 |
38 |
SUN T, CHEN W, XU S, et al The first carbon-carbon bond formation mechanism in methanol-to-hydrocarbons process over chabazite zeolite[J]. Chem, 2021,
doi: 10.1016/j.chempr.2021.05.023 |
39 |
STEPANOV A G, LUZGIN M V, ROMANNIKOV V N, et al The nature, structure, and composition of adsorbed hydrocarbon products of ambient temperature oligomerization of ethene on acidic zeolite H-ZSM-5[J]. J Catal, 1998, 178, 466-477.
doi: 10.1006/jcat.1998.2172 |
40 |
FRIDGEN T D, MCMAHON T B The reaction of protonated dimethyl ether with dimethyl Ether: temperature and isotope effects on the methyl cation transfer reaction forming trimethyloxonium cation and methanol[J]. J Am Chem Soc, 2001, 123 (17):3980-3985.
doi: 10.1021/ja002972c |
[1] | Yue LIANG,Yong-hui XIE,Peng-fei CHEN. Measurement and Analysis of Atomic Relaxation Time in Active Hydrogen Atomic Clocks [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 476-482. |
[2] | Wen-jie WAN,Zi-jing QIU,Feng QI,Gang-hua MEI,Da ZHONG. Design of a Miniaturized Low Noise 10 MHz Crystal Oscillator for Rubidium Atomic Frequency Standard [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 467-475. |
[3] | Chang-feng WANG,Yang LAN,Hai-yang YAN,Mei PENG,Si-yu CHEN. Laser Detection of Nuclear Magnetic Resonance FID Signal for Polarized 3He System [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 459-466. |
[4] | Xiao-yang ZHANG,Shou-quan YAO,Jun-cheng XU,Yu JIANG. Magnetic Field Locking System Based on Fluxgate and Time Domain Digital Frequency Discrimination [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 448-458. |
[5] | Rui QIN,Chao WANG,Qiang WANG,Min HU,Jin-lin LI,Jun XU,Feng DENG. Formation and Reactivity of Surface Methoxy Species in Methanol Conversion over SSZ-13 Zeolite [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 439-447. |
[6] | Ya-ting GU,Wen-na ZHANG,Jing-feng HAN,Cai-yi LOU,Hui-hui CHEN,Shu-tao XU,Ying-xu WEI,Zhong-min LIU. Investigation on the Differences of the Alcohols Conversion over H-SAPO-34 Zeolite [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 428-438. |
[7] | Lan DENG,Yuan-jun WANG. DTI Brain Template Construction Based on Gaussian Averaging [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 413-427. |
[8] | Hui XU,Yi-ting WU,Xu-xia WANG,Yan KANG,Hao LEI,Li-feng GAO. Hippocampal Metabolite Alterations in Long-term Insulin-treated Type 1 Diabetes Mellitus Rats Revealed by 1H MRS [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 393-400. |
[9] | Yun-shan PEI,Cai ZHANG,Xiao-li LIU,Kai CHENG,Ze-ting ZHANG,Cong-gang LI. Inhibition of α-Synuclein Aggregation by the Interaction Between Protein Disulfide Isomerase and α-Synuclein [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 381-392. |
[10] | Xiao CHANG,Xin CAI,Guang YANG,Sheng-dong NIE. Applications of Generative Adversarial Networks in Medical Image Translation [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 366-380. |
[11] | Lian-hua LIU,Bin JIANG,Dai-xie CHEN,Chi SU. The Status and Challenge of the Domestic Manufacturing of Superconduct Magnetic Resonance Instruments in China [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 345-355. |
[12] | Xian-xin QIU,Xu HAN,Yao WANG,Wei-na DING,Ya-wen SUN,Yan ZHOU,Hao LEI,Fu-chun LIN. The Alteration of Rich Club in Brain Functional Network in Internet Gaming Disorder [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 258-266. |
[13] | Yi ZHANG,Fei-yang LOU,Ke FANG,Gao CHEN,Xiao-tong ZHANG. Review of a New Molecular Imaging Method——Deuterium Metabolic Spectroscopy and Imaging [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 356-365. |
[14] | Wen-shan LIAO, Jun-cheng XU, Shou-quan YAO, Jian-qi LI, Yu JIANG. Phase Coherence Technology of Digital MR Console Based on Dual Reference Sources [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 327-336. |
[15] | Yuan-yuan LIU, Yu-xin YANG, Qing-yong ZHU, Zhuo-xu CUI, Jing CHENG, Cong-cong LIU, Dong LIANG, Yan-jie ZHU. Accelerating T1ρ Dispersion Imaging with Multiple Relaxation Signal Compensation [J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 243-257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||