Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (4): 428-438.doi: 10.11938/cjmr20222981
• Articles • Previous Articles Next Articles
Ya-ting GU1,2,Wen-na ZHANG1,Jing-feng HAN1,Cai-yi LOU1,2,Hui-hui CHEN1,2,Shu-tao XU1,Ying-xu WEI1,*(),Zhong-min LIU1,2,*()
Received:
2022-03-14
Online:
2022-12-05
Published:
2022-04-11
Contact:
Ying-xu WEI,Zhong-min LIU
E-mail:weiyx@dicp.ac.cn;liuzm@dicp.ac.cn
CLC Number:
Ya-ting GU, Wen-na ZHANG, Jing-feng HAN, Cai-yi LOU, Hui-hui CHEN, Shu-tao XU, Ying-xu WEI, Zhong-min LIU. Investigation on the Differences of the Alcohols Conversion over H-SAPO-34 Zeolite[J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 428-438.
1 |
MASCAL M Chemicals from biobutanol: technologies and markets[J]. Biofuel Bioprod Bior, 2012, 6 (4): 483- 493.
doi: 10.1002/bbb.1328 |
2 |
TRINDADE W R D, DOS SANTOS R G Review on the characteristics of butanol, its production and use as fuel in internal combustion engines[J]. Renew Sust Energ Rev, 2017, 69, 642- 651.
doi: 10.1016/j.rser.2016.11.213 |
3 |
VARGAS J M, MORELATO L H T, ORTEGA J O, et al Upgrading 1-butanol to unsaturated, carbonyl and aromatic compounds: a new synthesis approach to produce important organic building blocks[J]. Green Chem, 2020, 22 (8): 2365- 2369.
doi: 10.1039/D0GC00254B |
4 |
JOHN M, ALEXOPOULOS K, REYNIERS M F, et al First-principles kinetic study on the effect of the zeolite framework on 1-butanol dehydration[J]. ACS Catal, 2016, 6 (7): 4081- 4094.
doi: 10.1021/acscatal.6b00708 |
5 |
PALLA V C S, SHEE D, MAITY S K Conversion of n-butanol to gasoline range hydrocarbons, butylenes and aromatics[J]. Appl Catal A-Gen, 2016, 526, 28- 36.
doi: 10.1016/j.apcata.2016.07.026 |
6 |
JOHN M, ALEXOPOULOS K, REYNIERS M F, et al Mechanistic insights into the formation of butene isomers from 1-butanol in H-ZSM-5: DFT based microkinetic modelling[J]. Catal Sci Technol, 2017, 7 (5): 1055- 1072.
doi: 10.1039/C6CY02474B |
7 |
PALLA V C S, SHEE D, MAITY S K Production of aromatics from n-butanol over H-ZSM-5, H-beta, and gamma-Al2O3: Role of silica/alumina mole ratio and effect of pressure[J]. ACS Sustain Chem Eng, 2020, 8 (40): 15230- 15242.
doi: 10.1021/acssuschemeng.0c04888 |
8 |
MAKAROVA M A, PAUKSHTIS E A, THOMAS J M, et al Dehydration of n-butanol on zeolite H-ZSM-5 and amorphous aluminosilicate-detailed mechanistic study and the effect of pore confinement[J]. J Catal, 1994, 149 (1): 36- 51.
doi: 10.1006/jcat.1994.1270 |
9 |
JOHN M, ALEXOPOULOS K, REYNIERS M F, et al Reaction path analysis for 1-butanol dehydration in H-ZSM-5 zeolite: Ab initio and microkinetic modeling[J]. J Catal, 2015, 330, 28- 45.
doi: 10.1016/j.jcat.2015.07.005 |
10 |
PHUNG T K, HERNANDEZ L P, LAGAZZO A, et al Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Bronsted acidity and confinement effects[J]. Appl Catal A-Gen, 2015, 493, 77- 89.
doi: 10.1016/j.apcata.2014.12.047 |
11 |
GUNST D, ALEXOPOULOS K, VAN DER BORGHT K, et al Study of butanol conversion to butenes over H-ZSM-5: Effect of chemical structure on activity, selectivity and reaction pathways[J]. Appl Catal A-Gen, 2017, 539, 1- 12.
doi: 10.1016/j.apcata.2017.03.036 |
12 |
SMIT B, MAESEN T L M Towards a molecular understanding of shape selectivity[J]. Nature, 2008, 451 (7179): 671- 678.
doi: 10.1038/nature06552 |
13 |
SMIT B, MAESEN T L M Molecular simulations of zeolites: Adsorption, diffusion, and shape selectivity[J]. Chem Rev, 2008, 108 (10): 4125- 4184.
doi: 10.1021/cr8002642 |
14 |
MOLINER M, MARTINEZ C, CORMA A Multipore zeolites: Synthesis and catalytic applications[J]. Angew Chem Int Edit, 2015, 54 (12): 3560- 3579.
doi: 10.1002/anie.201406344 |
15 |
ZHONG J W, HAN J F, WEI Y X, et al Catalysts and shape selective catalysis in the methanol-to-olefin (MTO) reaction[J]. J Catal, 2021, 396, 23- 31.
doi: 10.1016/j.jcat.2021.01.027 |
16 |
OLSBYE U, SVELLE S, BJORGEN M, et al Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Edit, 2012, 51 (24): 5810- 5831.
doi: 10.1002/anie.201103657 |
17 |
CHU Y, JI P, YI X, et al Strong or weak acid, which is more efficient for Beckmann rearrangement reaction over solid acid catalysts[J]. Catal Sci Technol, 2015, 5 (7): 3675- 3681.
doi: 10.1039/C5CY00619H |
18 | 高树树, 徐舒涛, 魏迎旭, 等 固体核磁共振技术在甲醇制烯烃反应中的应用[J]. 波谱学杂志, 2021, 38 (4): 433- 447. |
GAO S S, XU S T, WEI Y X, et al Applications of solid-state nuclear magnetic resonance spectroscopy in methanol-to-olefins reaction[J]. Chinese J Magn Reson, 2021, 38 (4): 433- 447. | |
19 | 杨以宁, 王雪路, 姚叶峰 原位核磁共振技术研究反应环境对光催化甲醇重整过程的影响[J]. 波谱学杂志, 2020, 37 (1): 104- 113. |
YANG Y N, WANG X L, YAO Y F The effects of reaction environment on photocatalytic methanol reforming studied by operando nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2020, 37 (1): 104- 113. | |
20 | ATKINS M P. Process for the production of olefins: WO, 21139[P]. 1993-10-28. |
21 |
MADEIRA F F, GNEP N S, MAGNOUX P, et al Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Bronsted acidity[J]. Appl Catal A-Gen, 2009, 367 (1-2): 39- 46.
doi: 10.1016/j.apcata.2009.07.033 |
22 | MADEIRA F F, BEN TAYEB K, PINARD L, et al Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role[J]. Appl Catal A-Gen, 2012, 443, 171- 180. |
23 |
NGUYEN T M, LEVANMAO R Conversion of ethanol in aqueous-solution over ZSM-5 Zeolites: Study of the reaction network[J]. Appl Catal, 1990, 58 (1): 119- 129.
doi: 10.1016/S0166-9834(00)82282-4 |
24 |
SUN J, WANG Y Recent advances in catalytic conversion of ethanol to chemicals[J]. ACS Catal, 2014, 4 (4): 1078- 1090.
doi: 10.1021/cs4011343 |
25 |
MENTZEL U V, SHUNMUGAVEL S, HRUBY S L, et al High yield of liquid range olefins obtained by converting i-propanol over zeolite H-ZSM-5[J]. J Am Chem Soc, 2009, 131 (46): 17009- 17013.
doi: 10.1021/ja907692t |
26 |
ZHANG D Z, AL-HAJRI R, BARRI S A I, et al One-step dehydration and isomerisation of n-butanol to iso-butene over zeolite catalysts[J]. Chem Commun, 2010, 46 (23): 4088- 4090.
doi: 10.1039/c002240c |
27 |
ZHANG D Z, BARRI S A I, CHADWICK D n-Butanol to iso-butene in one-step over zeolite catalysts[J]. Appl Catal A-Gen, 2011, 403 (1-2): 1- 11.
doi: 10.1016/j.apcata.2011.05.037 |
28 |
KNöZINGER H, BüHL H, KOCHLOEFL K The dehydration of alcohols on alumina: XIV. Reactivity and mechanism[J]. J Catal, 1972, 24 (1): 57- 68.
doi: 10.1016/0021-9517(72)90007-3 |
29 | CHEN J R, LI J Z, WEI Y X, et al Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction[J]. Catal Commun, 2014, 4636- 40. |
30 |
WU X Q, XU S T, WEI Y X, et al Evolution of C-C bond formation in the methanol-to-olefins process: From direct coupling to autocatalysis[J]. ACS Catal, 2018, 8 (8): 7356- 7361.
doi: 10.1021/acscatal.8b02385 |
31 |
GUISNET M, COSTAL L, RIBEIRO F R Prevention of zeolite deactivation by coking[J]. J Mol Catal A: Chem, 2009, 305 (1-2): 69- 83.
doi: 10.1016/j.molcata.2008.11.012 |
32 |
HAN J F, LIU Z Q, LI H, et al Simultaneous evaluation of reaction and diffusion over molecular sieves for shape-selective catalysis[J]. ACS Catal, 2020, 10 (15): 8727- 8735.
doi: 10.1021/acscatal.0c02054 |
33 |
ILIAS S, KHARE R, MALEK A, et al A descriptor for the relative propagation of the aromatic- and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5[J]. J Catal, 2013, 303, 135- 140.
doi: 10.1016/j.jcat.2013.03.021 |
34 |
WANG C M, WANG Y D, XIE Z K Verification of the dual cycle mechanism for methanol-to-olefin conversion in HSAPO-34: a methylbenzene-based cycle from DFT calculations[J]. Catal Sci Technol, 2014, 4 (8): 2631- 2638.
doi: 10.1039/C4CY00262H |
35 |
ZHANG W N, ZHI Y C, HUANG J D, et al Methanol to olefins reaction route based on methylcyclopentadienes as critical intermediates[J]. ACS Catal, 2019, 9 (8): 7373- 7379.
doi: 10.1021/acscatal.9b02487 |
36 |
SONG W G, FU H, HAW J F Supramolecular origins of product selectivity for methanol-to-olefin catalysis on H-SAPO-34[J]. J Am Chem Soc, 2001, 123 (20): 4749- 4754.
doi: 10.1021/ja0041167 |
37 |
WANG C, XU J, QI G D, et al Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5[J]. J Catal, 2015, 332, 127- 137.
doi: 10.1016/j.jcat.2015.10.001 |
38 |
YU B W, ZHANG W N, WEI Y X, et al Capture and identification of coke precursors to elucidate the deactivation route of the methanol-to-olefin process over H-SAPO-34[J]. Chem Commun, 2020, 56 (58): 8063- 8066.
doi: 10.1039/D0CC02408B |
39 |
MUNSON E J, KHEIR A A, LAZO N D, et al In situ solid-state NMR study of methanol-to-gasoline chemistry in zeolite H-ZSM-5[J]. J Phys Chem, 1993, 97 (16): 4248- 4248.
doi: 10.1021/j100118a051 |
40 |
XU S T, ZHENG A M, WEI Y X, et al Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites[J]. Angew Chem Int Edit, 2013, 52 (44): 11564- 11568.
doi: 10.1002/anie.201303586 |
41 |
WANG W, JIAO J, JIANG Y J, et al Formation and decomposition of surface ethoxy species on acidic zeolite Y[J]. Chemphyschem, 2005, 6 (8): 1467- 1469.
doi: 10.1002/cphc.200500262 |
42 |
JIANG Y, HUANG J, REDDY MARTHALA V R, et al In situ MAS NMR–UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration[J]. Micropor Mesopor Mater, 2007, 105 (1-2): 132- 139.
doi: 10.1016/j.micromeso.2007.05.028 |
43 |
DAI W L, WANG C M, DYBALLA M, et al Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34[J]. ACS Catal, 2015, 5 (1): 317- 326.
doi: 10.1021/cs5015749 |
44 |
ZHANG W N, ZHANG M Z, XU S T, et al Methylcyclopentenyl cations linking initial stage and highly efficient stage in methanol-to-hydrocarbon process[J]. ACS Catal, 2020, 10 (8): 4510- 4516.
doi: 10.1021/acscatal.0c00799 |
45 |
STEPANOV A G, SIDELNIKOV V N, ZAMARAEV K I In situ 13C solid-state NMR and ex situ GC-MS analysis of the products of tert-butyl alcohol dehydration on H-ZSM-5 zeolite catalyst[J]. Chem-Eur J, 1996, 2 (2): 157- 167.
doi: 10.1002/chem.19960020207 |
46 |
WANG C, WANG Q, XU J, et al Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C-27Al solid-state NMR spectroscopy[J]. Angew Chem Int Ed, 2016, 55 (7): 2507- 2511.
doi: 10.1002/anie.201510920 |
[1] | Jiang Tao, Han Xiuwen, Yang Ping, Jiang ChengZhang, Lu Shiwei, Yang Nianhua, Qiu Jianqing. 13C CP MAS NMR STUDIES OF THE DRY SULFATE CHITOSAN MEMBRANE [J]. Chinese Journal of Magnetic Resonance, 1997, 14(2): 115-119. |
[2] | Han Xiuwen, Jiang Tao, Jiang Chengzhang, Yang Ping, Lu Shiwei, Yang Nianhua, Qiu Jingqing. 13C CP MAS NMR STUDIES OF THE SWOLLEN SULFATE CHITOSAN MEMBRANE [J]. Chinese Journal of Magnetic Resonance, 1997, 14(2): 121-126. |
[3] | Ji Tao, Han Xiuwen, Hu Jiehan, Zhang Xiaodong, Yang Nianhua, Qiu Jiangqing. NMR STUDY OF SILK PROTEIN Ⅲ. High Resolution 13C NMR Studies of Antheraea yamamai [J]. Chinese Journal of Magnetic Resonance, 1991, 8(4): 425-431. |
[4] | Han Xiuwen, Guo Jianmin, Hu Jiehan, Ji Tao, Zhang Xiaodong, Hu Jianzhi, Qiu Jianqing. NMR STUDY OF SILK PROTEIN Ⅱ. 13C CP MAS NMR Studies of Bombyx Mori, Antheraea Pernyi Silkworm Cocoon and Their Fibroin in Solid State [J]. Chinese Journal of Magnetic Resonance, 1991, 8(3): 245-251. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||