Chinese Journal of Magnetic Resonance ›› 2019, Vol. 36 ›› Issue (3): 359-376.doi: 10.11938/cjmr20182682
• Review Articles • Previous Articles Next Articles
HU Kun, SUN Han-dong, PUNO Pema-tenzin
Received:
2018-09-10
Published:
2018-10-30
CLC Number:
HU Kun, SUN Han-dong, PUNO Pema-tenzin. Application of Quantum Chemical Calculation of Nuclear Magnetic Resonance Parameters in the Structure Elucidation of Natural Products[J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 359-376.
[1] NEWMAN D J, CRAGG G M. Natural products as sources of new drugs from 1981 to 2014[J]. J Nat Prod, 2016, 79(3):629-661. [2] BRETON R C, REYNOLDS W F. Using NMR to identify and characterize natural products[J]. Nat Prod Rep, 2013, 30(4):501-524. [3] WANG B, LIU X, ZHU G L, et al. Applications of new two-dimensional NMR spectroscopy in natural products research[J]. Chinese J Magn Reson, 2013, 30(4):602-613. 王蓓, 刘星, 朱国磊, 等. 新二维核磁共振谱在天然产物研究中的应用[J]. 波谱学杂志, 2013, 30(4):602-613. [4] REYNOLDS W F. Natural product structure elucidation by NMR spectroscopy[M]//BADAL S, DELGODA R. Pharmacognosy. Boston:Academic Press, 2017:567-596. [5] SUN L J, HU X F, C X, et al. NMR characterization of flavanone naringenin 7-O-glycoside diastereomer[J]. Chinese J Magn Reson, 2017, 34(4):465-473. 孙丽娟, 胡小芳, 程寻, 等. 柚皮素7-O-葡萄糖苷非对映异构体的NMR波谱分析[J]. 波谱学杂志, 2017, 34(4):465-473. [6] YIN T P, CHEN Y, LUO P, et al. Structural elucidation and NMR spectral assignments of two C19-diterpenoid alkaloids[J]. Chinese J Magn Reson, 2018, 35(1):90-97. 尹田鹏, 陈阳, 罗萍, 等. 两个C19-二萜生物碱的结构鉴定和NMR信号归属[J]. 波谱学杂志, 2018, 35(1):90-97. [7] HALABALAKI M, VOUGOGIANNOPOULOU K, MIKROS E, et al. Recent advances and new strategies in the NMR-based identification of natural products[J]. Curr Opin in Biotech, 2014, 25:1-7. [8] MENNA M, IMPERATORE C, MANGONI A, et al. Challenges in the configuration assignment of natural products. A case-selective perspective[J]. Nat Prod Rep, 2019, 36(3):476-489. [9] NICOLAOU K C, SNYDER S A. Chasing molecules that were never there:misassigned natural products and the role of chemical synthesis in modern structure elucidation[J]. Angew Chem Int Ed, 2005, 44(7):1012-1044. [10] SUYAMA T L, GERWICK W H, MCPHAIL K L. Survey of marine natural product structure revisions:A synergy of spectroscopy and chemical synthesis[J]. Bioorg Med Chem, 2011, 19(22):6675-6701. [11] YOO H D, NAM S J, CHIN Y W, et al. Misassigned natural products and their revised structures[J]. Arch Pharm Res, 2016, 39(2):143-153. [12] CHHETRI B K, LAVOIE S, SWEENEY-JONES A M, et al. Recent trends in the structural revision of natural products[J]. Nat Prod Rep, 2018, 35(6):514-531. [13] BARONE G, DUCA D, SILVESTRI A, et al. Determination of the relative stereochemistry of flexible organic compounds by ab initio methods:conformational analysis and Boltzmann-averaged GIAO 13C NMR chemical shifts[J]. Chem-Eur J, 2002, 8(14):3240-3245. [14] BARONE G, GOMEZ-PALOMA L, DUCA D, et al. Structure validation of natural products by quantum-mechanical GIAO calculations of 13C NMR chemical shifts[J]. Chem-Eur J, 2002, 8(14):3233-3239. [15] GRIMBLAT N, SAROTTI A M. Computational chemistry to the rescue:modern toolboxes for the assignment of complex molecules by GIAO NMR calculations[J]. Chem-Eur J, 2016, 22(35):12246-12261. [16] BIFULCO G, DAMBRUOSO P, GOMEZ-PALOMA L, et al. Determination of relative configuration in organic compounds by NMR spectroscopy and computational methods[J]. Chem Rev, 2007, 107(9):3744-3779. [17] DI MICCO S, CHINI M G, RICCIO R, et al. Quantum mechanical calculation of NMR parameters in the stereostructural determination of natural products[J]. Eur J Org Chem, 2010, 2010(8):1411-1434. [18] LODEWYK M W, SIEBERT M R, TANTILLO D J. Computational prediction of 1H and 13C chemical shifts:a useful tool for natural product, mechanistic, and synthetic organic chemistry[J]. Chem Rev, 2012, 112(3):1839-1862. [19] BAGNO A, SAIELLI G. Addressing the stereochemistry of complex organic molecules by density functional theory-NMR[J]. Wires Comput Mol Sci, 2015, 5(2):228-240. [20] GU B B, LIN H W. Quantum chemical calculation of 1H and 13C chemical shifts and 1H-1H coupling constants in structure assignment of natural products[J]. Journal of International Pharmaceutical Research, 2015, 42(6):706-712. 顾斌斌, 林厚文. 量子化学计算1H和13C化学位移与1H-1H偶合常数在天然产物结构鉴定中的运用[J]. 国际药学研究杂志, 2015, 42(6):706-712. [21] NAVARRO-VAZQUEZ A. State of the art and perspectives in the application of quantum chemical prediction of 1H and 13C chemical shifts and scalar couplings for structural elucidation of organic compounds[J]. Magn Reson Chem, 2017, 55(1):29-32. [22] TANG Y, XUE Y, DU G, et al. Structural revisions of a class of natural products:scaffolds of aglycon analogues of fusicoccins and cotylenins isolated from fungi[J]. Angew Chem Int Ed, 2016, 55(12):4069-4073. [23] SAROTTI A M. Structural revision of two unusual rhamnofolane diterpenes, curcusones I and J, by means of DFT calculations of NMR shifts and coupling constants[J]. Org Biomol Chem, 2018, 16(6):944-950. [24] GRIMBLAT N, ZANARDI M M, SAROTTI A M. Beyond DP4:an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts[J]. J Org Chem, 2015, 80(24):12526-12534. [25] SECO J M, QUINOA E, RIGUERA R. Assignment of the absolute configuration of polyfunctional compounds by NMR using chiral derivatizing agents[J]. Chem Rev, 2012, 112(8):4603-4641. [26] ZANARDI M M, BIGLIONE F A, SORTINO M A, et al. General quantum-based NMR method for the assignment of absolute configuration by single or double derivatization:Scope and limitations[J]. J Org Chem, 2018, 83(19):11839-11849. [27] SHI Y M, CAI S L, LI X N, et al. LC-UV-guided isolation and structure determination of lancolide E:a nortriterpenoid with a tetracyclo[5.4.0.02,4.03,7] undecane-bridged system from a "talented" schisandra plant[J]. Org Lett, 2016, 18(1):100-103. [28] WILLOUGHBY P H, JANSMA M J, HOYE T R. A guide to small-molecule structure assignment through computation of 1H and 13C NMR chemical shifts[J]. Nat Protoc, 2014, 9(3):643-660. [29] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 Rev. B.01[CP]. Wallingford, CT:2016. [30] NEESE F. Software update:the ORCA program system, version 4.0[J]. Wires Comput Mol Sci, 2018, 8(1):e1327. [31] AIDAS K, ANGELI C, BAK K L, et al. The Dalton quantum chemistry program system[J]. Wires Comput Mol Sci, 2014, 4(3):269-284. [32] HAWKINS P C D. Conformation generation:the state of the art[J]. J Chem Inf Model, 2017, 57(8):1747-1756. [33] VAINIO M J, JOHNSON M S. Generating conformer ensembles using a multiobjective genetic algorithm[J]. J Chem Inf Model, 2007, 47(6):2462-2474. [34] MITEVA M A, GUYON F, TUFFéRY P. Frog2:Efficient 3D conformation ensemble generator for small compounds[J]. Nucleic Acids Res, 2010, 38(Web Server issue):W622-W627. [35] CASE D A, CHEATHAM T E, DARDEN T, et al. The Amber biomolecular simulation programs[J]. J Comput Chem, 2005, 26(16):1668-1688. [36] SPOEL D V D, LINDAHL E, HESS B, et al. GROMACS:fast, flexible, and free[J]. J Comput Chem, 2005, 26(16):1701-1718. [37] GRIMME S, BANNWARTH C, SHUSHKOV P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z=1-86)[J]. J Chem Theory Comput, 2017, 13(5):1989-2009. [38] HALGREN T A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94[J]. J Comput Chem, 1996, 17(5,6):490-519. [39] BANKS J L, BEARD H S, CAO Y, et al. Integrated modeling program, applied chemical theory (IMPACT)[J]. J Comput Chem, 2005, 26(16):1752-1780. [40] STEWART J J P. Optimization of parameters for semiempirical methods V:Modification of NDDO approximations and application to 70 elements[J]. J Mol Model, 2007, 13(12):1173-1213. [41] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J Phys Chem, 1994, 98(45):11623-11627. [42] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor Chem Acc, 2008, 120(1):215-241. [43] CHAI J D, HEAD-GORDON M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. PCCP, 2008, 10(44):6615-6620. [44] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys, 2010, 132(15):154104. [45] RASSOLOV V A, RATNER M A, POPLE J A, et al. 6-31G* basis set for third-row atoms[J]. J Comput Chem, 2001, 22(9):976-984. [46] KRISHNAN R, BINKLEY J S, SEEGER R, et al. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. J Chem Phys, 1980, 72(1):650-654. [47] SCHäFER A, HORN H, AHLRICHS R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr[J]. J Chem Phys, 1992, 97(4):2571-2577. [48] SCHäFER A, HUBER C, AHLRICHS R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr[J]. J Chem Phys, 1994, 100(8):5829-5835. [49] BUTTS C P, JONES C R, TOWERS E C, et al. Interproton distance determinations by NOE-surprising accuracy and precision in a rigid organic molecule[J]. Org Biomol Chem, 2011, 9(1):177-184. [50] BUTTS C P, JONES C R, SONG Z, et al. Accurate NOE-distance determination enables the stereochemical assignment of a flexible molecule-arugosin C[J]. Chem Commun, 2012, 48(72):9023-9025. [51] JONES C R, GREENHALGH M D, BAME J R, et al. Subtle temperature-induced changes in small molecule conformer dynamics-observed and quantified by NOE spectroscopy[J]. Chem Commun, 2016, 52(14):2920-2923. [52] FACELLI J C. Calculations of chemical shieldings:theory and applications[J]. Concept Magn Reson Part A, 2004, 20A(1):42-69. [53] DITCHFIELD R. Self-consistent perturbation theory of diamagnetism[J]. Mol Phys, 1974, 27(4):789-807. [54] KEITH T A, BADER R F W. Calculation of magnetic response properties using a continuous set of gauge transformations[J]. Chem Phys Lett, 1993, 210(1):223-231. [55] FLAIG D, MAURER M, HANNI M, et al. Benchmarking hydrogen and carbon NMR chemical shifts at HF, DFT, and MP2 levels[J]. J Chem Theory Comput, 2014, 10(2):572-578. [56] IRON M A. Evaluation of the factors impacting the accuracy of 13C NMR chemical shift predictions using density functional theory-the advantage of long-range corrected functionals[J]. J Chem Theory Comput, 2017, 13(11):5798-5819. [57] WⅡTALA K W, HOYE T R, CRAMER C J. Hybrid density functional methods empirically optimized for the computation of 13C and 1H chemical shifts in chloroform solution[J]. J Chem Theory Comput, 2006, 2(4):1085-1092. [58] BROWN S G, JANSMA M J, HOYE T R. Case study of empirical and computational chemical shift analyses:reassignment of the relative configuration of phomopsichalasin to that of diaporthichalasin[J]. J Nat Prod, 2012, 75(7):1326-1331. [59] KEAL T W, TOZER D J. The exchange-correlation potential in Kohn-Sham nuclear magnetic resonance shielding calculations[J]. J Chem Phys, 2003, 119(6):3015-3024. [60] ADAMO C, BARONE V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:The mPW and mPW1PW models[J]. J Chem Phys, 1998, 108(2):664-675. [61] WILSON P J, BRADLEY T J, TOZER D J. Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials[J]. J Chem Phys, 2001, 115(20):9233-9242. [62] ADAMO C, BARONE V. Toward reliable density functional methods without adjustable parameters:The PBE0 model[J]. J Chem Phys, 1999, 110(13):6158-6170. [63] JENSEN F. Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods[J]. J Chem Theory Comput, 2008, 4(5):719-727. [64] JENSEN F. Unifying general and segmented contracted basis sets. Segmented polarization consistent basis sets[J]. J Chem Theory Comput, 2014, 10(3):1074-1085. [65] GRIMME S, BANNWARTH C, DOHM S, et al. Fully automated quantum-chemistry-based computation of spin-spin-coupled nuclear magnetic resonance spectra[J]. Angew Chem Int Ed, 2017, 56(46):14763-14769. [66] XIN D, SADER C A, CHAUDHARY O, et al. Development of a 13C NMR chemical shift prediction procedure using B3LYP/cc-pVDZ and empirically derived systematic error correction terms:a computational small molecule structure elucidation method[J]. J Org Chem, 2017, 82(10):5135-5145. [67] KUTATELADZE A G, REDDY D S. High-throughput in silico structure validation and revision of halogenated natural products Is enabled by parametric corrections to DFT-computed 13C NMR chemical shifts and spin-spin coupling constants[J]. J Org Chem, 2017, 82(7):3368-3381. [68] KUTATELADZE A G, KUZNETSOV D M. Triquinanes and related sesquiterpenes revisited computationally:structure corrections of hirsutanols B and D, hirsutenol E, cucumin B, antrodins C-E, chondroterpenes A and H, chondrosterins C and E, dichrocephone A, and pethybrene[J]. J Org Chem, 2017, 82(20):10795-10802. [69] STOYCHEV G L, AUER A A, IZSáK R, et al. Self-consistent field calculation of nuclear magnetic resonance chemical shielding constants using Gauge-Including Atomic Orbitals and approximate two-electron integrals[J]. J Chem Theory Comput, 2018, 14(2):619-637. [70] SAROTTI A M, PELLEGRINET S C. A multi-standard approach for GIAO (13)C NMR calculations[J]. J Org Chem, 2009, 74(19):7254-7260. [71] SAROTTI A M, PELLEGRINET S C. Application of the multi-standard methodology for calculating 1H NMR chemical shifts[J]. J Org Chem, 2012, 77(14):6059-6065. [72] BALLY T, RABLEN P R. Quantum-chemical simulation of 1H NMR spectra. 2. Comparison of DFT-based procedures for computing proton-proton coupling constants in organic molecules[J]. J Org Chem, 2011, 76(12):4818-4830. [73] MATSUMORI N, KANENO D, MURATA M, et al. Stereochemical determination of acyclic structures based on carbon-proton spin-coupling constants. A method of configuration analysis for natural products[J]. J Org Chem, 1999, 64(3):866-876. [74] KUTATELADZE A G, MUKHINA O A. Relativistic force field:parametric computations of proton-proton coupling constants in 1H NMR spectra[J]. J Org Chem, 2014, 79(17):8397-8406. [75] KUTATELADZE A G, MUKHINA O A. Relativistic force field:parametrization of 13C-1H nuclear spin-spin coupling constants[J]. J Org Chem, 2015, 80(21):10838-10848. [76] BIFULCO G, BASSARELLO C, RICCIO R, et al. Quantum mechanical calculations of NMR J coupling values in the determination of relative configuration in organic compounds[J]. Org Lett, 2004, 6(6):1025-1028. [77] JENSEN F. The optimum contraction of basis sets for calculating spin-spin coupling constants[J]. Theor Chem Acc, 2010, 126(5):371-382. [78] SMITH S G, GOODMAN J M. Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation[J]. J Org Chem, 2009, 74(12):4597-4607. [79] SMITH S G, GOODMAN J M. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation:the DP4 probability[J]. J Am Chem Soc, 2010, 132(37):12946-12959. [80] XIN D, JONES P J, GONNELLA N C. DiCE:diastereomeric in silico chiral elucidation, expanded DP4 probability theory method for diastereomer and structural assignment[J]. J Org Chem, 2018, 83(9):5035-5043. [81] ERMANIS K, PARKES K E, AGBACK T, et al. Expanding DP4:application to drug compounds and automation[J]. Org Biomol Chem, 2016, 14(16):3943-3949. [82] ERMANIS K, PARKES K E B, AGBACK T, et al. Doubling the power of DP4 for computational structure elucidation[J]. Org Biomol Chem, 2017, 15(42):8998-9007. [83] SAROTTI A M. Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition:a new strategy for simple and rapid detection of structural misassignments[J]. Org Biomol Chem, 2013, 11(29):4847-4859. [84] ZANARDI M M, SAROTTI A M. GIAO C-H COSY simulations merged with artificial neural networks pattern recognition analysis. Pushing the structural validation a step forward[J]. J Org Chem, 2015, 80(19):9371-9378. [85] KIM C S, SUBEDI L, OH J, et al. Bioactive triterpenoids from the twigs of Chaenomeles sinensis[J]. J Nat Prod, 2017, 80(4):1134-1140. [86] ZANARDI M M, SUáREZ A G, SAROTTI A M. Determination of the relative configuration of terminal and spiroepoxides by computational methods. Advantages of the inclusion of unscaled data[J]. J Org Chem, 2017, 82(4):1873-1879. [87] XIN D, SADER C A, FISCHER U, et al. Systematic investigation of DFT-GIAO 15N NMR chemical shift prediction using B3LYP/cc-pVDZ:application to studies of regioisomers, tautomers, protonation states and N-oxides[J]. Org Biomol Chem, 2017, 15(4):928-936. [88] TRIPATHI A, SCHOFIELD M M, CHLIPALA G E, et al. Baulamycins A and B, broad-spectrum antibiotics identified as inhibitors of siderophore biosynthesis in Staphylococcus aureus and Bacillus anthracis[J]. J Am Chem Soc, 2014, 136(4):1579-1586. [89] GUCHHAIT S, CHATTERJEE S, AMPAPATHI R S, et al. Total synthesis of reported structure of baulamycin A and Its congeners[J]. J Org Chem, 2017, 82(5):2414-2435. [90] WU J, LORENZO P, ZHONG S, et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures[J]. Nature, 2017, 547(7664):436-440. [91] XIAO W L, YANG L M, GONG N B, et al. Rubriflordilactones A and B, two novel bisnortriterpenoids from Schisandra rubriflora and their biological activities[J]. Org Lett, 2006, 8(5):991-994. [92] YANG P, YAO M, LI J, et al. Total synthesis of rubriflordilactone B[J]. Angew Chem Int Ed, 2016, 55(24):6964-6968. [93] GRIMBLAT N, KAUFMAN T S, SAROTTI A M. Computational chemistry driven solution to rubriflordilactone B[J]. Org Lett, 2016, 18(24):6420-6423. [94] KUTATELADZE A G. Structure revision of decurrensides A-E enabled by the RFF parametric calculations of proton spin-spin coupling constants[J]. J Org Chem, 2016, 81(18):8659-8661. [95] REDDY D S, KUTATELADZE A G. Structure revision of an acorane sesquiterpene cordycepol A[J]. Org Lett, 2016, 18(19):4860-4863. [96] CHACON MORALES P A, AMARO-LUIS J M, KUTATELADZE A G. Structure determination and mechanism of formation of a seco-moreliane derivative supported by computational analysis[J]. J Nat Prod, 2017, 80(4):1210-1214. [97] GU B B, TANG J, WANG S P, et al. Structure, absolute configuration, and variable-temperature 1H-NMR study of (±)-versiorcinols A-C, three racemates of diorcinol monoethers from the sponge-associated fungus Aspergillus versicolor 16F-11[J]. RSC Adv, 2017, 7(79):50254-50263. [98] SUN C P, KUTATELADZE A G, ZHAO F, et al. A novel withanolide with an unprecedented carbon skeleton from physalis angulata[J]. Org Biomol Chem, 2017, 15(5):1110-1114. [99] WANG C, HUO X K, LUAN Z L, et al. Alismanin A, a triterpenoid with a C34 skeleton from Alisma orientale as a natural agonist of human pregnane X receptor[J]. Org Lett, 2017, 19(20):5645-5648. [100] KUTATELADZE A G, KUZNETSOV D M, BELOGLAZKINA A A, et al. Addressing the challenges of structure elucidation in natural products possessing the oxirane moiety[J]. J Org Chem, 2018, 83(15):8341-8352. [101] BISSON J, SIMMLER C, CHEN S N, et al. Dissemination of original NMR data enhances reproducibility and integrity in chemical research[J]. Nat Prod Rep, 2016, 33(9):1028-1033. [102] MCALPINE J B, CHEN S N, KUTATELADZE A, et al. The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research[J]. Nat Prod Rep, 2019, 36(1):35-107. [103] SREBRO-HOOPER M, AUTSCHBACH J. Calculating natural optical activity of molecules from first principles[J]. Annu Rev of Phys Chem, 2017, 68(1):399-420. [104] PESCITELLI G, DI BARI L, BEROVA N. Application of electronic circular dichroism in the study of supramolecular systems[J]. Chem Soc Rev, 2014, 43(15):5211-5233. [105] STEFANO S, PATRIZIA S, MARCIN G, et al. Absolute configuration determination by quantum mechanical calculation of chiroptical spectra:basics and applications to fungal metabolites[J]. Curr Med Chem, 2018, 25(2):287-320. [106] POLAVARAPU P L. Molecular structure determination using chiroptical spectroscopy:Where we may go wrong?[J]. Chirality, 2012, 24(11):909-920. [107] SUAREZ-ORTIZ G A, CERDA-GARCIA-ROJAS C M, FRAGOSO-SERRANO M, et al. Complementarity of DFT calculations, NMR Anisotropy, and ECD for the configurational analysis of brevipolides K-O from Hyptis brevipes[J]. J Nat Prod, 2017, 80(1):181-189. [108] BUEVICH A V, ELYASHBERG M E. Synergistic combination of CASE algorithms and DFT chemical shift predictions:a powerful approach for structure elucidation, verification, and revision[J]. J Nat Prod, 2016, 79(12):3105-3116. [109] TANTILLO D J. Walking in the woods with quantum chemistry-applications of quantum chemical calculations in natural products research[J]. Nat Prod Rep, 2013, 30(8):1079-1086. [110] LIU Y, SAURí J, MEVERS E, et al. Unequivocal determination of complex molecular structures using anisotropic NMR measurements[J]. Science, 2017, 356(6333). [111] NAVARRO-VáZQUEZ A, GIL R R, BLINOV K. Computer-assisted 3D structure elucidation (CASE-3D) of natural products combining isotropic and anisotropic NMR parameters[J]. J Nat Prod, 2018, 81(1):203-210. [112] LI G W, LIU H, QIU F, et al. Residual dipolar couplings in structure determination of natural products[J]. Nat Prod Bioprospect, 2018, 8(4):279-295. [113] INOKUMA Y, YOSHIOKA S, ARIYOSHI J, et al. X-ray analysis on the nanogram to microgram scale using porous complexes[J]. Nature, 2013, 495461. [114] MATSUDA Y, MITSUHASHI T, LEE S, et al. Astellifadiene:structure determination by NMR spectroscopy and crystalline sponge method, and elucidation of its niosynthesis[J]. Angew Chem Int Ed, 2016, 55(19):5785-5788. [115] WADA N, KERSTEN ROLAND D, IWAI T, et al. Crystalline-sponge-based structural analysis of crude natural product extracts[J]. Angew Chem, Int Ed, 2018, 130(14):3733-3737. [116] MEVERS E, SAURí J, LIU Y, et al. Homodimericin A:a complex hexacyclic fungal metabolite[J]. J Am Chem Soc, 2016, 138(38):12324-12327. [117] MILANOWSKI D J, OKU N, CARTNER L K, et al. Unequivocal determination of caulamidines A and B:application and validation of new tools in the structure elucidation tool box[J]. Chem Sci, 2018, 9(2):307-314. |
[1] | YANG Yun-han, DU Yao, YING Fei-xiang, YANG Jun-li, XIA Da-zhen, XIA Fu-ting, YANG Li-juan. Inclusion Behavior of Naringenin/β-Cyclodextrin Supramolecular Complex [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 319-330. |
[2] | WANG Ya-lan, WANG Xiao-jing, WANG Zhi-wei. Spectral Analyses and Structural Elucidation of Azilsartan [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 350-358. |
[3] | LIU Ji-hong, JIN Kun, WANG Ping, LUO Gen. An NMR Study on Esculetin and It's Derivatives [J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 341-349. |
[4] | LIN Yun-liang, GAO Hong-mei, LI Feng, CHEN Xiang-feng. Spectral Analysis and Structural Elucidation of Luliconazole [J]. Chinese Journal of Magnetic Resonance, 2018, 35(3): 385-392. |
[5] | ZHOU Qi, HUANG Chong-yang, GAO Shan, WANG Hui-juan, FENG Ji-wen, LIU Chao-yang, ZHANG Jin-zhi, ZOU Qi-chao. Structure Elucidation of Taxol Based on Two-Dimensional NMR Spectra Collected on a 500 MHz NMR Spectrometer Built In-House [J]. Chinese Journal of Magnetic Resonance, 2017, 34(1): 52-60. |
[6] | SONG Ben-teng, CHU Yue-ying, WANG Ji-qing, ZHENG An-min, DENG Feng. Influences of Intermolecular Interactions on the 17O Nuclear Magnetic Parameters in Nucleic Acid Bases: A Theoretical Investigation [J]. Chinese Journal of Magnetic Resonance, 2016, 33(3): 378-394. |
[7] | XUE Chen,XU Heng*. Theoretical Calculation of 1JCH Based on Atom Charges [J]. Chinese Journal of Magnetic Resonance, 2014, 31(3): 397-406. |
[8] | WANG Ling-Yun, YANG Ming-Hui. Quantum Chemical Calculation on 1H NMR Chemical Shifts of Valsartan——An AT1 Receptor Antagonist [J]. Chinese Journal of Magnetic Resonance, 2012, 29(4): 530-536. |
[9] | SUN Xue-Wei, LI Zhi-Gang, NI An-Cai, XU Chun-Xia, DING Rui, YU Li. Spectral Studies and Structural Elucidation of Aspoxicillin [J]. Chinese Journal of Magnetic Resonance, 2012, 29(4): 582-589. |
[10] | XU Lu, LI Bao-Hui, SUN Ping-Chuan. Chemical Shift Anisotropy of Polypropylenes: Theoretical Calculation and Experimental Results from Solid-State NMR Experiments [J]. Chinese Journal of Magnetic Resonance, 2010, 27(4): 597-608. |
[11] | LU Jing-Fen, GU Li-Nu-Er, LI Ting-Feng. Studies of Antioxidation Activity of Natural Products with EPR Methods [J]. Chinese Journal of Magnetic Resonance, 2010, 27(1): 22-31. |
[12] |
GENG Zhu-feng;OUYANG-Jie;DENG Zhi-wei;SHEN Sheng-min;DU Shu-shan . NMR Application in Selective Separation for Natural Products and Their Structural Investigation [J]. Chinese Journal of Magnetic Resonance, 2009, 26(3): 424-436. |
[13] | ZHANG Pei-xuan1; LI Jian-feng2; WEI Ya-bing1*; SHEN Jing-shan2. NMR Characterization and Structural Elucidation of Fluorine Derivative of Tetrahydroberberine [J]. Chinese Journal of Magnetic Resonance, 2009, 26(1): 111-119. |
[14] |
ZHOU Zhi-ming1,2; ZHANG Xu1; JIANG Bin1,2; XIA Sheng-an1,2; LAN Wen-xian1,2; LI Xue1,2; YE Chao-hui1; LIU Mai-li1* . Extending WATERGATE for Suppression of Binary Solvent Signals in NMR Spectroscopy [J]. Chinese Journal of Magnetic Resonance, 2008, 25(3): 297-306. |
[15] | LIU Xing-yan; LIAO Xian-wei; CHEN Guo-li; ZHANG Hong-mei; FAN Zhi-jin. Theoretical Calculation of 1H NMR Spectra of Sulfonylurea Herbicides [J]. Chinese Journal of Magnetic Resonance, 2008, 25(2): 211-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||