[1] Berrow N S, Alderton D, Sainsbury S, et al. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications[J]. Nucleic Acids Res, 2007, 35: e45. [2] Cabrita L D, Dai W W, Bottomley S P. A family of E-coli expression vectors for laboratory scale and high throughput soluble protein production[J]. BMC Biotechnol, 2006, 6: 12. [3] Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability[J]. PLoS ONE, 2008, 3: e3647. [4] Gileadi N A, Burgess-Brown S M, Colebrook G, et al. High Throughput Production of Recombinant Human Proteins for Crystallography//Kobe B, Guss M, Huber T, Eds. Structural Proteomics: High Throughput Methods[M]. New York: Humana Press, 2008: 221-246. [5] Graslund S, Nordlund P, Weigelt J, et al. Protein production and purification[J]. Nat Methods, 2008, 5: 135-146. [6] Scheich C, Kummel D, Soumailakakis D, et al. Vectors for co-expression of an unrestricted number of proteins[J]. Nucleic Acids Res, 2007, 35: e43. [7] Cormier C Y, Mohr S E, Zuo D, et al. Protein structure initiative material repository: an open shared public resource of structural genomics plasmids for the biological community[J]. Nucleic Acids Res, 2010, 38: D743-D749. [8] Blommel P G, Martin P A, Wrobel R L, et al. High efficiency single step production of expression plasmids from cDNA clones using the Flexi Vector cloning system[J]. Protein Expr Purif, 2006, 47: 562-570. [9] Li M Z, Elledge S J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC[J]. Nat Methods, 2007, 4: 251-256. [10] Walhout A J M, Temple G F, Brasch M A, et al. GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes[J]. Methods Enzymol, 2000, 328: 575-592. [11] Stols L, Gu M Y, Dieckman L, et al. A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site[J]. Protein Expr Purif, 2002, 25: 8-15. [12] Chanda P K, Edris W A, Kennedy J D. A set of ligation-independent expression vectors for co-expression of proteins in Escherichia coli[J]. Protein Expr. Purif, 2006, 47: 217-224. [13] Ballas N, Mandel G. The many faces of REST oversee epigenetic programming of neuronal genes[J]. Curr Opin Neurobiol, 2005, 15: 500-506. [14] Eddy S R. Non-coding RNA genes and the modern RNA world[J]. Nat Rev Genet, 2001, 2: 919-929. [15] Fire S, Xu M K, Montgomery S A, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391: 806-811. [17] Kuwabara T, Hsieh J, Nakashima K, et al. A small modulatory dsRNA specifies the fate of adult neural stem cells[J]. Cell, 2004, 116: 779-793. [19] Chowdhury S K, Katta V, Chait B T. Electrospray ionization mass spectrometric peptide mapping: A rapid, sensitive technique for protein structure analysis[J]. Biochem Bioph Res Commun, 1990, 167(2): 686-692. [20] Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode[J]. Method Enzymol, 1997, 276: 307-326. [21] Emsley P, Cowtan K. Developments in the CCP4 molecular-graphics project[J]. Acta Crystallogr D Biol Crystallogr, 2004, 60: 2 126-2 132. [22] Afonine P V, Mustyakimov M, Grosse-Kunstleve R W, et al. Joint X-ray and neutron refinement with phenix.refine[J]. Acta Crystallogr D Biol Crystallogr, 2010, 66: 213-221. [23] Abraham E P, Chain E B. An enzyme from bacterial able to destroy penicillin[J]. Nature, 1940, 146: 837-837. [24] Frere J M. β-lactamase and bacterial resistance to antibiotics[J]. Molec Microbiol, 1995, 16: 385-395. |