[1] Onuchic J N, Wolynes P G. Theory of protein folding[J]. Curr Opin Struct Biol, 2004, 14: 70-75.
[2] Rao J N, Jao C C, Hegde B G, et al. A combinatorial NMR and EPR approach for evaluating the structural ensemble of partially folded proteins[J]. J Am Chem Soc, 2010, 132: 8 657-8 668.
[3] Young J C, Agashe V R, Siegers K, et al. Pathways of chaperone-mediated protein folding in the cytosol[J]. Nat Rev Mol Cell Biol, 2004, 5: 781-791.
[4] Macario A J, Lange M, Ahring B K, et al. Stress genes and proteins in the archaea[J]. Microbiol Mol Biol Rev, 1999, 63: 923-967.
[5] Wright P E, Dyson H J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm[J]. J Mol Biol, 1999, 293: 321-331.
[6] Li Y, Kim S, Brodsky B, et al. Identification of partially disordered peptide intermediates through residue-specific NMR diffusion measurements[J]. J Am Chem Soc, 2005, 127: 10 490-10 491.
[7] Redfield C. Using nuclear magnetic resonance spectroscopy to study molten globule states of proteins[J]. Methods, 2004, 34: 121-132.
[8] Whittaker S B, Spence G R, Gunter G J, et al. NMR analysis of the conformational properties of the trapped on-pathway folding intermediate of the bacterial immunity protein Im7[J]. J Mol Biol, 2007, 366: 1 001-1 015.
[9] Jensen M R, Houben K, Lescop E, et al. Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein[J]. J Am Chem Soc, 2008, 130: 8 055-8 061.
[10] Bernado P, Mylonas E, Petoukhov M V, et al. Structural characterization of flexible proteins using small-angle X-ray scattering[J]. J Am Chem Soc, 2007, 129: 5 656-5 664.
[11] Feng H, Zhou Z, Bai Y. A protein folding pathway with multiple folding intermediates at atomic resolution[J]. Proc Natl Acad Sci USA, 2005, 102: 5 026-5 031.
[12] Rao J N, Jao C C, Hegde B G, et al. A combinatorial NMR and EPR approach for evaluating the structural ensemble of partially folded proteins[J]. J Am Chem Soc, 132: 8 657-8 668.
[13] Austin R H, Beeson K W, Eisenstein L, et al. Dynamics of ligand binding to myoglobin[J]. Biochemistry, 1975, 14: 5 355-5 373.
[14] Young M A, Gonfloni S, Superti-Furga G, et al. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation[J]. Cell, 2001, 105: 115-126.
[15] Radhakrishnan I, Perez-Alvarado G C, Parker D, et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator: coactivator interactions[J]. Cell, 1997, 91: 741-752.
[16] Kriwacki R W, Hengst L, Tennant L, et al. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity[J]. Proc Natl Acad Sci USA, 1996, 93: 11 504-11 509.
[17] Morimoto R I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging[J]. Genes Dev, 2008, 22: 1 427-1 438.
[18] Lashuel H A, Lansbury P T, Jr. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins?[J]. Q Rev Biophys, 2006, 39: 167-201.
[19] Altenbach C, Greenhalgh D A, Khorana H G, et al. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spinlabeled mutants of bacteriorhodopsin[J]. Proc Natl Acad Sci USA, 1994, 91: 1 667-1 671.
[20] Cornish V W, Benson D R, Altenbach C A, et al. Site-specific incorporation of biophysical probes into proteins[J]. Proc Natl Acad Sci USA, 1994, 91: 2 910-2 914.
[21] Cooke J A, Brown L J. Distance measurements by continuous wave EPR spectroscopy to monitor protein folding[J]. Methods Mol Biol, 752: 73-96.
[22] Kosen P A. Spin labeling of proteins[J]. Method Enzymol, 1989, 177: 86-121.
[23] Dyson H J, Wright P E. Unfolded proteins and protein folding studied by NMR[J]. Chem Rev, 2004, 104: 3 607-3 622.
[24] Schmidt P G, Kuntz I D. Distance measurements in spin-labeled lysozyme[J]. Biochemistry, 1984, 23: 4 261-4 266.
[25] Gillespie J R, Shortle D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels[J]. J Mol Biol, 1997, 268: 158-169.
[26] Hubbell W L, Gross A, Langen R, et al. Recent advances in site-directed spin labeling of proteins[J]. Curr Opin Struct Biol, 1998, 8: 649-656.
[27] Klug C S, Su W, Feix J B. Mapping of the residues involved in a proposed beta-strand located in the ferric enterobactin receptor FepA using site-directed spin-labeling[J]. Biochemistry, 1997, 36: 13 027-13 033.
[28] Fajer M I, Li H, Yang W, et al. Mapping electron paramagnetic resonance spin label conformations by the simulated scaling method[J]. J Am Chem Soc, 2007, 129: 13 840-13 846.
[29] Czogalla A, Pieciul A, Jezierski A, et al. Attaching a spin to a protein-site-directed spin labeling in structural biology[J]. Acta Biochim Pol, 2007, 54: 235-244.
[30] Schiemann O, Prisner T F. Long-range distance determinations in biomacromolecules by EPR spectroscopy[J]. Q Rev Biophys, 2007, 40: 1-53.
[31] Fanucci G E, Cafiso D S. Recent advances and applications of site-directed spin labeling[J]. Curr Opin Struct Biol, 2006, 16: 644-653.
[32] Borbat P P, Costa-Filho A J, Earle K A, et al. Electron spin resonance in studies of membranes and proteins[J]. Science, 2001, 291: 266-269.
[33] Hubbell W L, Cafiso D S, Altenbach C. Identifying conformational changes with site-directed spin labeling[J]. Nat Struct Biol, 2000, 7: 735-739.
[34] Hustedt E J, Beth A H. Nitroxide spin-spin interactions: applications to protein structure and dynamics[J]. Annu Rev Biophys Biomol Struct, 1999, 28: 129-153.
[35] Altenbach C, Cai K, Klein-Seetharaman J, et al. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306-319 at the cytoplasmic end of helix TM7 and in helix H8[J]. Biochemistry, 2001, 40: 15 483-15 492.
[36] Langen R, Isas J M, Luecke H, et al. Membrane-mediated assembly of annexins studied by site-directed spin labeling[J]. J Biol Chem, 1998, 273: 22 453-22 457.
[37] Liu Z, Zhang J, Wang X, et al. Temperature-induced partially unfolded state of hUBF HMG Box-5: conformational and dynamic investigations of the Box5 thermal intermediate ensemble[J]. Proteins, 2009, 77: 432-447.
[38] Korzhnev D M, Bezsonova I, Evanics F, et al. Probing the transition state ensemble of a protein folding reaction by pressure-dependent NMR relaxation dispersion[J]. J Am Chem Soc, 2006, 128: 5 262-5 269.
[39] Yang W, Xu Y, Wu J, et al. Solution structure and DNA binding property of the fifth HMG box domain in comparison with the first HMG box domain in human upstream binding factor[J]. Biochemistry, 2003, 42: 1 930-1 938.
[40] Wang D, Zhang J, Jin X, et al. Investigation of the structural stability of hUBF HMG Box-5 by native-state hydrogen exchange[J]. Biochemistry, 2007, 46: 1 293-1 302.
[41] Battiste J L, Wagner G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data[J]. Biochemistry, 2000, 39: 5 355-5 365.
[42] Gillespie J R, Shortle D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures[J]. J Mol Biol, 1997, 268: 170-184.
[43] Iwahara J, Schwieters C D, Clore G M. Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule[J]. J Am Chem Soc, 2004, 126: 5 879-5 896.
[44] Donaldson L W, Skrynnikov N R, Choy W Y, et al. Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy[J]. J Am Chem Soc, 2001, 123: 9 843-9 847.
[45] Rodriguez-Castaneda F, Haberz P, Leonov A, et al. Paramagnetic tagging of diamagnetic proteins for solution NMR[J]. Magn Reson Chem, 2006, 44(SI): S10-S16.
[46] Bertini I, Luchinat C, Parigi G, et al. Perspectives in paramagnetic NMR of metalloproteins[J]. Dalton Trans, 2008, 3 782-3 790.
[47] Kristjansdottir S, Lindorff-Larsen K, Fieber W, et al. Formation of native and non-native interactions in ensembles of denatured ACBP molecules from paramagnetic relaxation enhancement studies[J]. J Mol Biol, 2005, 347: 1 053-1 062.
[48] Lietzow M A, Jamin M, Jane Dyson H J, et al. Mapping long-range contacts in a highly unfolded protein[J]. J Mol Biol, 2002, 322: 655-662.
[49] Tang C, Iwahara J, Clore G M. Visualization of transient encounter complexes in protein-protein association[J]. Nature, 2006, 444: 383-386.
[50] Tang C, Schwieters C D, Clore G M. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR[J]. Nature, 2007, 449: 1 078-1 082.
[51] Pannier M, Veit S, Godt A, et al. Dead-time free measurement of dipole-dipole interactions between electron spins[J]. J Magn Reson, 2000, 142: 331-340.
[52] Georgieva E R, Ramlall T F, Borbat P P, et al. Membrane-bound alpha-synuclein forms an extended helix: long-distance pulsed EPR measurements using vesicles, bicelles, and rodlike micelles[J]. J Am Chem Soc, 2008, 130: 12 856-12 857.
[53] Altenbach C, Kusnetzow A K, Ernst O P, et al. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation[J]. Proc Natl Acad Sci USA, 2008, 105: 7 439-7 444. |