[1] Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories[J]. Neurobiol Aging, 1997, 18(4): 351-357.
[2] Selkoe D J. Alzheimer’s disease: genes, proteins, and therapy[J]. Physiol Rev, 2001, 81(2): 741-766.
[3] Chishti M A, Yang D S, Janus C, et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695[J]. J Biol Chem, 2001, 276(24): 21 562-21 570.
[4] Sturchler P C, Abramowski D, Duke M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology[J]. Proc Natl Acad Sci USA, 1997, 94(24): 13 287-13 292.
[5] Valk J, Barkhof F, Scheltens P, et al. Magnetic Resonance in Dementia[M]. Heidelberg/Berlin/New York: Springer-Verlag, 2002.
[6] Delatour B, Guegan M, Volk A, et al. In vivo MRI and histological evaluation of brain atrophy in APP/PS1 transgenic mice[J]. Neurobiol Aging, 2006, 27(6): 835-847.
[7] Lee S P, Falangola M F, Nixon R A, et al. Visualization of beta-amyloid plaques in a transgenic mouse model of Alzheimer’s disease using MR microscopy without contrast reagents[J]. Magn Reson Med, 2004, 52(3): 538-544.
[8] Jack Jr C R, Garwood M, Wengenack T M, et al. In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent[J]. Magn Reson Med, 2004, 52(6): 1 263-1 271.
[9] Falangola M F, Lee S P, Nixon R A, et al. Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice[J]. Neurochem Res, 2005, 30(2): 201-205.
[10] Huesgen C T, Burger P C, Crain B J, et al. In vitro MR microscopy of the hippocampus in Alzheimer’s disease[J]. Neurology, 1993, 43(1): 145-152.
[11] Benveniste H, Einstein G, Kim K R, et al. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy[J]. Proc Natl Acad Sci USA, 1999, 96(24): 14 079-14 084.
[12] Zaim Wadghiri Y, Sigurdsson E M, Sadowski M, et al. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging[J]. Magn Reson Med, 2003, 50(2): 293-302.
[13] Haley A P, Knight-Scott J, Fuchs K L, et al. Shortening of hippocampus spin-spin relaxation time in probable Alzheimer’s disease: a 1H magnetic resonance sprctroscopy study[J]. Neurosci Lett, 2004, 362(3): 167-170.
[14] Laakso M P, Partanen K, Soininen H, et al. MR T2 relaxometry in Alzheimer’s disease and age-associated memory impairment[J]. Neurobiol Aging, 1996, 17(4): 535-540.
[15] Kirsch S J, Jacobs R W, Butcher L L, et al. Prolongation of magnetic resonance T2 time in hippocampus of human patients marks the presence and severity of Alzheimer’s disease[J]. Neurosci Lett, 1992, 134(2): 187-190.
[16] Helpern J A, Lee S P, Falangola M F, et al. MRI assessment of neuropathology in a transgenic mouse model of Alzheimer’s disease[J]. Magn Reson Med, 2004, 51(4): 794-798.
[17] Falangola M F, Ardekani B A, Lee S P, et al. Application of a non-linear image registration algorithm to quantitative analysis of T2 melaxation time in transgenic mouse medels of AD[J]. J Neurosci Methods, 2005, 144(1): 91-97.
[18] El Tayara N E, Delatour B, Cudennec C L, et al. Age-related evolution of amyloid burden, iron load, and MR relaxation times in a transgenic mouse model of Alzheimer’s disease[J]. Neurobiol Disease, 2006, 22(1): 199-208.
[19] Dhenain M, El Tayara N E, Wu T D, et al. Characterization of in vivo MRI detectable thalamic amyloid plaques from APP/PS1 mice[J]. Neurobiol Aging, 2009, 30(1): 41-53. |