[1] Hossmann K A. Experimental models for the investigation of brain ischemia[J]. Cardiovasc Res, 1998, 39(1): 106-120.
[2] Hossmann K A. Cerebral ischemia: models, methods and outcomes[J]. Neuropharmacology, 2008, 55(3): 257-270.
[3] Richard Green A, Odergren T, Ashwood T. Animal models of stroke: do they have value for discovering neuroprotective agents?[J]. Trends Pharmacol Sci, 2003, 24(8): 402-408.
[4] Bacigaluppi M, Comi G, Hermann D M. Animal models of ischemic stroke. Part two: modeling cerebral ischemia[J]. Open Neurol J, 2010, 4: 34-38.
[5] Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia[J]. Pharmacol Biochem Behav, 2007, 87(1): 179-197.
[6] Durukan A, Tatlisumak T. Animal models of ischemic stroke (Chapter 3)[M]. Handb Clin Neurol, 2008, 92: 43-66.
[7] Durukan A, Strbian D, Tatlisumak T. Rodent models of ischemic stroke: a useful tool for stroke drug development[J]. Curr Pharm Des, 2008, 14(4): 359-370.
[8] Donnan G A, Davis S M. Stroke drug development: usually, but not always, animal models[J]. Stroke, 2005, 36(10): 2 326.
[9] Feigin V L, Lawes C M, Bennett D A, et al. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century[J]. Lancet Neurol, 2003, 2(1): 43-53.
[10] Yepes M, Roussel B D, Ali C, et al. Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic[J]. Trends Neurosci, 2009, 32(1): 48-55.
[11] Sena E S, Briscoe C L, Howells D W, et al. Factors affecting the apparent efficacy and safety of tissue plasminogen activator in thrombotic occlusion models of stroke: systematic review and meta-analysis[J]. J Cereb Blood Flow Metab, 2010, in press.
[12] Gilligan A K, Thrift A G, Sturm J W, et al. Stroke units, tissue plasminogen activator, aspirin and neuroprotection: which stroke intervention could provide the greatest community benefit?[J]. Cerebrovasc Dis, 2005, 20(4): 239-244.
[13] Wahlgren N G, Ahmed N. Neuroprotection in cerebral ischaemia: facts and fancies-the need for new approaches[J]. Cerebrovasc Dis, 2004, 17(Suppl 1): 153-166.
[14] Liebeskind D S, Kasner S E. Neuroprotection for ischaemic stroke: an unattainable goal?[J]. CNS Drugs, 2001, 15(3): 165-174.
[15] Lutsep H L, Clark W M. Neuroprotection in acute ischaemic stroke. Current status and future potential[J]. Drugs R D, 1999, 1(1): 3-8.
[16] Howells D W, Donnan G A. Where will the next generation of stroke treatments come from?[J]. PLoS Med, 2010, 7(3): e1000224.
[17] Ginsberg M D. Current status of neuroprotection for cerebral ischemia: synoptic overview[J]. Stroke, 2009, 40(3 Suppl): S111-S114.
[18] Ginsberg M D. Neuroprotection for ischemic stroke: past, present and future[J]. Neuropharmacology, 2008, 55(3): 363-389.
[19] Zivin J A, Grotta J C. Animal stroke models. They are relevant to human disease[J]. Stroke, 1990, 21(7): 981-983.
[20] STAIR. Recommendations for standards regarding preclinical neuroprotective and restorative drug development[J]. Stroke, 1999, 30(12): 2 752-2 758.
[21] Fukuda S, del Zoppo G J. Models of focal cerebral ischemia in the nonhuman primate[J]. ILAR J, 2003, 44(2): 96-104.
[22] Bihel E, Pro-Sistiaga P, Letourneur A, et al. Permanent or transient chronic ischemic stroke in the non-human primate: behavioral, neuroimaging, histological, and immunohistochemical investigations[J]. J Cereb Blood Flow Metab, 2009, 30(2): 273-285.
[23] D'Arceuil H E, Duggan M, He J, et al. Middle cerebral artery occlusion in Macaca fascicularis: acute and chronic stroke evolution[J]. J Med Primatol, 2006, 35(2): 78-86.
[24] Marshall J W, Ridley R M. Assessment of cognitive and motor deficits in a marmoset model of stroke[J]. ILAR J, 2003, 44(2): 153-160.
[25] Roitberg B, Khan N, Tuccar E, et al. Chronic ischemic stroke model in cynomolgus monkeys: behavioral, neuroimaging and anatomical study[J]. Neurol Res, 2003, 25(1): 68-78.
[26] Spetzler R F, Selman W R, Weinstein P, et al. Chronic reversible cerebral ischemia: evaluation of a new baboon model[J]. Neurosurgery, 1980, 7(3): 257-261.
[27] de Crespigny A J, D'Arceuil H E, Maynard K I, et al. Acute studies of a new primate model of reversible middle cerebral artery occlusion[J]. J Stroke Cerebrovasc Dis, 2005, 14(2): 80-87.
[28] Jungreis C A, Nemoto E, Boada F, et al. Model of reversible cerebral ischemia in a monkey model[J]. AJNR Am J Neuroradiol, 2003, 24(9): 1 834-1 836.
[29] LaVerde G, Nemoto E, Jungreis C A, et al. Serial triple quantum sodium MRI during non-human primate focal brain ischemia[J]. Magn Reson Med, 2007, 57(1): 201-205.
[30] Bakker D, Pauwels E K. Stroke: the role of functional imaging[J]. Eur J Nucl Med, 1997, 24(1): 2-5.
[31] Bang O Y. Multimodal MRI for ischemic stroke: from acute therapy to preventive strategies[J]. J Clin Neurol, 2009, 5(3): 107-119.
[32] Novak V, Abduljalil A M, Novak P, et al. High-resolution ultrahigh-field MRI of stroke[J]. Magn Reson Imaging, 2005, 23(4): 539-548.
[33] Larkman D J, Nunes R G. Parallel magnetic resonance imaging[J]. Phys Med Biol, 2007, 52(7): R15-R55.
[34] Liu X, Zhu T, Gu T, et al. Optimization of in vivo high-resolution DTI of non-human primates on a 3T human scanner[J]. Methods, 2010, 50(3): 205-13.
[35] Hu X, Norris D G. Advances in high-field magnetic resonance imaging[J]. Annu Rev Biomed Eng, 2004, 6: 157-184.
[36] Jahng G H, Weiner M W, Schuff N. Improved arterial spin labeling method: applications for measurements of cerebral blood flow in human brain at high magnetic field MRI[J]. Med Phys, 2007, 34(11): 4 519-4 525.
[37] Jones S C, Kharlamov A, Yanovski B, et al. Stroke onset time using sodium MRI in rat focal cerebral ischemia[J]. Stroke, 2006, 37(3): 883-888.
[38] Thulborn K R, Davis D, Snyder J, et al. Sodium MR imaging of acute and subacute stroke for assessment of tissue viability[J]. Neuroimaging Clin N Am, 2005, 15(3): 639-653, xi-xii.
[39] Thulborn K R, Gindin T S, Davis D, et al. Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies[J]. Radiology, 1999, 213(1): 156-166.
[40] Wang Y, Hu W, Perez-Trepichio A D, et al. Brain tissue sodium is a ticking clock telling time after arterial occlusion in rat focal cerebral ischemia[J]. Stroke, 2000, 31(6): 1 386-1 391; discussion 1392.
[41] Marks M P, Tong D C, Beaulieu C, et al. Evaluation of early reperfusion and i.v. tPA therapy using diffusion and perfusion weighted MRI[J]. Neurology, 1999, 52(9): 1 792-1 798.
[42] de Crespigny A J, Tsuura M, Moseley M E, et al. Perfusion and diffusion MR imaging of thromboembolic stroke[J]. J Magn Reson Imaging, 1993, 3(5): 746-754.
[43] Minematsu K, Fisher M, Li L M, et al. Diffusion and perfusion magnetic-resonance-imaging studies to evaluate a noncompetitive N-methyl-D-aspartate antagonist and reperfusion in experimental stroke in rats[J]. Stroke, 1993, 24(12): 2 074-2 081.
[44] Tatlisumak T, Li F. Use of diffusion and perfusion weighted magnetic resonance imaging in drug development for ischemic stroke[J]. Curr Drug Targets CNS Neurol Disord, 2003, 2(2): 131-141.
[45] Tatlisumak T, Strbian D, Abo Ramadan U, et al. The role of diffusion- and perfusion-weighted magnetic resonance imaging in drug development for ischemic stroke: from laboratory to clinics[J]. Curr Vasc Pharmacol, 2004, 2(4): 343-355.
[46] Jensen U R, Liu J R, Eschenfelder C, et al. The correlation between quantitative T2' and regional cerebral blood flow after acute brain ischemia in early reperfusion as demonstrated in a middle cerebral artery occlusion/reperfusion model of the rat[J]. J Neurosci Methods, 2009, 178(1): 55-58.
[47] Melhem E R, Mori S, Mukundan G, et al. Diffusion tensor MR imaging of the brain and white matter tractography[J]. AJR Am J Roentgenol, 2002, 178(1): 3-16.
[48] Gillard J H, Papadakis N G, Martin K, et al. MR diffusion tensor imaging of white matter tract disruption in stroke at 3 T[J]. Br J Radiol, 2001, 74(883): 642-647.
[49] Chen Z, Ni P, Zhang J, et al. Evaluating ischemic stroke with diffusion tensor imaging[J]. Neurol Res, 2008, 30(7): 720-726.
[50] Mukherjee P. Diffusion tensor imaging and fiber tractography in acute stroke[J]. Neuroimaging Clin N Am, 2005, 15(3): 655-665, xii.
[51] Sotak C H. The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review[J]. NMR Biomed, 2002,15(7/8): 561-569.
[52] Weih K S, Driesel W, von Mengershausen M, et al. Online motion correction for diffusion-weighted segmented-EPI and FLASH imaging
[J]. MAGMA, 2004, 16(6): 277-283.
[53] Ulug A M, Barker P B, van Zijl P C. Correction of motional artifacts in diffusion-weighted images using a reference phase map[J]. Magn Reson Med, 1995, 34(3): 476-480.
[54] Huang S, Zhang X. Physiological motion artifact correction in segmented DTI measurement of anesthetized non-human primates[M]. Honolulu: Proc Intl Soc Mag Reson Med, 2009. 1 503.
[55] Detre J A, Leigh J S, Williams D S, et al. Perfusion imaging[J]. Magn Reson Med, 1992, 23(1): 37-45.
[56] Wang J, Zhang Y, Wolf R L, et al. Amplitude-modulated continuous arterial spin-labeling 3.0 T perfusion MR imaging with a single coil: feasibility study[J]. Radiology, 2005, 235(1): 218-228.
[57] Talagala S L, Ye F Q, Ledden P J, et al. Wholebrain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil[J]. Magn Reson Med, 2004, 52(1): 131-140.
[58] Kim S G. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping[J]. Magn Reson Med, 1995, 34(3): 293-301.
[59] Zhang X, Nagaoka T, Auerbach E J, et al. Quantitative basal CBF and CBF fMRI of rhesus monkeys using three-coil continuous arterial spin labeling[J]. Neuroimage, 2007, 34(3): 1 074-1 083.
[60] Restom K, Behzadi Y, Liu T T. Physiological noise reduction for arterial spin labeling functional MRI[J]. Neuroimage, 2006, 31(3): 1 104-1 115.
[61] Pfeuffer J, Van de Moortele P F, Ugurbil K, et al. Correction of physiologically induced global off-resonance effects in dynamic echoplanar and spiral functional imaging[J]. Magn Reson Med, 2002, 47(2): 344-353.
[62] Van de Moortele P F, Pfeuffer J, Glover G H, et al. Respiration-induced B0 fluctuations and their spatial distribution in the human brain at 7 Tesla[J]. Magn Reson Med, 2002, 47(5): 888-895.
[63] Hu X, Le T H, Parrish T, et al. Retrospective estimation and correction of physiological fluctuation in functional MRI[J]. Magn Reson Med, 1995, 34(2): 201-212.
[64] Zhang X, Nagaoka T, Champion R, et al. Physiological motion correction of ASL fMRI measurement of rhesus monkey[M]. Toronto: Proc Intl Soc Mag Reson Med, 2008. 3 129.
[65] Huang J, Mocco J, Choudhri T F, et al. A modified transorbital baboon model of reperfused stroke[J]. Stroke, 2000, 31(12): 3 054-3 063.
[66] West G A, Golshani K J, Doyle K P, et al. A new model of cortical stroke in the rhesus macaque[J]. J Cereb Blood Flow Metab, 2009, 29(6): 1 175-1 186.
[67] Chin Y, Sato Y, Mase M, et al. Transient decrease in cerebral motor pathway fractional anisotropy after focal ischemic stroke in monkey[J]. Neurosci Res, 2010, 66(4): 406-411.
[68] Marshall J W, Ridley R M, Baker H F, et al. Serial MRI, functional recovery, and long-term infarct maturation in a non-human primate model of stroke[J]. Brain Res Bull, 2003, 61(6): 577-585.
[69] Coon A L, Arias-Mendoza F, Colby G P, et al. Correlation of cerebral metabolites with functional outcome in experimental primate stroke using in vivo 1H-magnetic resonance spectroscopy[J]. AJNR Am J Neuroradiol, 2006, 27(5): 1 053-1 058.
[70] LaVerde G C, Jungreis C A, Nemoto E, et al. Sodium time course using 23Na MRI in reversible focal brain ischemia in the monkey[J]. J Magn Reson Imaging, 2009, 30(1): 219-223. |