[1] |
WANG Y Q, LIANG J H, JIA R X, et al. Alzheimer disease in China (2015-2050) estimated using the 1% population sampling survey in 2015[J]. Chinese Journal of Alzheimer's Disease and Related Disorders, 2019, 2(1): 289-298.
|
|
王英全, 梁景宏, 贾瑞霞, 等. 2020-2050年中国阿尔茨海默病患病情况预测研究[J]. 阿尔茨海默病及相关病, 2019, 2(1): 289-298.
|
[2] |
XIA Z, YUE G, XU Y, et al. A novel end-to-end hybrid network for Alzheimer's disease detection using 3D CNN and 3D CLSTM[C]// 2020 IEEE 17th international symposium on biomedical imaging (ISBI). IEEE, 2020: 1-4.
|
[3] |
QIAN C Y, WANG Y J. Research progress on imaging classification of Alzheimer’s disease based on deep learning[J]. Chinese J Magn Reson, 2023, 40(2): 220-238.
|
|
钱程一, 王远军. 基于深度学习的阿尔兹海默症影像学分类研究进展[J]. 波谱学杂志, 2023, 40(2): 220-238.
doi: 10.11938/cjmr20223013
|
[4] |
ZHANG F, TIAN S, CHEN S, et al. Voxel-based morphometry: improving the diagnosis of Alzheimer’s disease based on an extreme learning machine method from the ADNI cohort[J]. Neuroscience, 2019, 414: 273-279.
|
[5] |
HUA X, LEOW A D, PARIKSHAK N, et al. Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects[J]. NeuroImage, 2008, 43(3): 458-469.
doi: 10.1016/j.neuroimage.2008.07.013
pmid: 18691658
|
[6] |
LIU M, ZHANG D, ADELI E, et al. Inherent structure-based multiview learning with multitemplate feature representation for Alzheimer's disease diagnosis[J]. IEEE T Biomed Eng, 2015, 63(7): 1473-1482.
|
[7] |
ZHAO X, ZHANG X, LI X J, et al. Multimodal glioma segmentation with fusion of multiple self-attention and deformable convolutions[J]. Chinese J Magn Reson, 2023, 40(3): 280-292.
|
|
赵欣, 张鑫, 李鑫杰, 等. 融合多重自注意力和可变形卷积的多模态脑胶质瘤分割[J]. 波谱学杂志, 2023, 40(3): 280-292.
doi: 10.11938/cjmr20233059
|
[8] |
LI W, WANG Y, LIU Y. DMAF-Net: deformable multi-scale adaptive fusion network for dental structure detection with panoramic radiographs[J]. Dentomaxillofac Rad, 2024, 57(5):296-307.
|
[9] |
DAI Z, YI J, YAN L, et al. Pfemed: Few-shot medical image classification using prior guided feature enhancement[J]. Pattern Recognit, 2023, 134: 109108.
|
[10] |
JAIN R, JAIN N, AGGARWAL A, et al. Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images[J]. Cogn Syst Res, 2019, 57: 147-159.
|
[11] |
KANG W, LIN L, ZHANG B, et al. Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer's disease diagnosis[J]. Comput Biol Med, 2021, 136: 104678.
|
[12] |
PAYAN A, MONTANA G. Predicting Alzheimer's disease: a neuroimaging study with 3D convolutional neural networks[J]. arXiv preprint arXiv:1502.02506, 2015.
|
[13] |
BAKKOURI I, AFDEL K, BENOIS-PINEAU J, et al. Recognition of Alzheimer's disease on sMRI based on 3D multi-scale CNN features and a gated recurrent fusion unit[C]// 2019 international conference on content-based multimedia indexing (CBMI), IEEE, 2019: 1-6.
|
[14] |
YEE E, MA D, POPURI K, et al. Construction of MRI-based Alzheimer’s disease score based on efficient 3D convolutional neural network: Comprehensive validation on 7,902 images from a multi-center dataset[J]. J Alzheimer's Dis, 2021, 79(1): 47-58.
|
[15] |
YU S, LIAO W H. An Alzheimer’s disease classification algorithm based on 3D-ResNet[J]. Comput Eng & Sci, 2020, 42(6): 1068-1075.
|
|
郁松, 廖文浩. 基于3D-ResNet的阿尔兹海默症分类算法研究[J]. 计算机工程与科学, 2020, 42(6): 1068-1075.
|
[16] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the European conference on computer vision (ECCV), 2018: 3-19.
|
[17] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770-778.
|
[18] |
KWAK K, STANFORD W, DAYAN E, et al. Identifying the regional substrates predictive of Alzheimer's disease progression through a convolutional neural network model and occlusion[J]. Hum Brain Mapp, 2022, 43(18): 5509-5519.
doi: 10.1002/hbm.26026
pmid: 35904092
|
[19] |
RAJU M, THIRUPALANI M, VIDHYABHARATHI S, et al. Deep learning based multilevel classification of Alzheimer’s disease using MRI scans[C]// IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2021, 1084(1): 012017.
|
[20] |
QIU S, JOSHI P S, MILLER M I, et al. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification[J]. Brain, 2020, 143(6): 1920-1933.
|
[21] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 7132-7141.
|
[22] |
WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020: 11534-11542.
|
[23] |
LIU Z, LU H, PAN X, et al. Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network[J]. Knowl-Based Syst, 2022, 238: 107942.
|
[24] |
JACK JR C R, BERNSTEIN M A, FOX N C, et al. The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods[J]. J Magn Reson Imaging, 2008, 27(4): 685-691.
doi: 10.1002/jmri.21049
pmid: 18302232
|
[25] |
JENKINSON M, BECKMANN C F, BEHRENS T E J, et al. FSL[J]. NeuroImage, 2012, 62(2): 782-790.
doi: 10.1016/j.neuroimage.2011.09.015
pmid: 21979382
|
[26] |
SELVARAJU R R, COGSWALL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]// Proceedings of the IEEE international conference on computer vision, 2017: 618-626.
|
[27] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]// International Conference on Learning Representations (ICLR), 2015: 1-14.
|
[28] |
HUANG G, LIU Z, VAN Der MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 4700-4708.
|
[29] |
DOSOVITSKIY A, ALEXEY D, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint arXiv: 2010.11929, 2020.
|
[30] |
TONG Y, LI Z, HUANG H, et al. Research of spatial context convolutional neural networks for early diagnosis of Alzheimer’s disease[J]. J Supercomput, 2024, 80(4): 5279-5297.
|