[1] |
RAN W B, LIANG Y C, QIN Q, et al. Medical image super-resolution reconstruction based on generative adversarial networks and attention mechanisms[J]. Intelligent Computer and Applications, 2023, 13 (1): 136-141.
|
|
冉文兵, 梁永超, 覃芹, 等. 基于生成对抗网络和注意力机制的医学图像超分辨率重建[J]. 智能计算机与应用, 2023, 13(1): 136-141.
|
[2] |
TAI Z Y, LI D D, LIU M. Medical image generation based on self attention mechanism and generative adversarial network[J]. Journal of Changchun University of Technology, 2024, 45 (3): 208-215.
|
|
邰志艳, 李黛黛, 刘铭. 基于自注意力机制生成对抗网络的医学图像生成[J]. 长春工业大学学报, 2024, 45(3): 208-215.
|
[3] |
GAN Y, YE M, ZENG F Y. A review of generative adversarial networks and their applications[J]. Journal of Chinese Computer Systems, 2020, 41(6): 1133-1139.
|
|
淦艳, 叶茂, 曾凡玉. 生成对抗网络及其应用研究综述[J]. 小型微型计算机系统, 2020, 41(6): 1133-1139.
|
[4] |
WU T Y, XU Y C, CHAO P F. Research on data enhancement based on generative adversarial networks[J]. Optics and Optoelectronic Technology, 2020, 18 (4): 47-52.
|
|
吴天雨, 许英朝, 晁鹏飞. 基于生成对抗网络的数据增强研究[J]. 光学与光电技术, 2020, 18(4): 47-52.
|
[5] |
WANG D X, QIN E Q, YUAN H C. Classification method of aquatic animals based on DCGAN data augmentation[J]. Fishery Modernization, 2019, 46(6): 68-75.
|
|
王德兴, 秦恩倩, 袁红春. 基于DCGAN数据增强的水产动物分类方法[J]. 渔业现代化, 2019, 46(6): 68-75.
|
[6] |
殷存军. 基于深度卷积网络和AdaBoost算法的无人机图像中病害松树识别[D]. 合肥: 安徽大学, 2020.
|
[7] |
ZHAO N, SONG Y, YANG A, et al. Accurate classification of tunnel lining cracks using lightweight ShuffleNetV2-1.0-SE model with DCGAN-based data augmentation and transfer learning[J]. Appl Sci, 2024, 14(10): 4142.
|
[8] |
ZHAO G, CAI Z, WANG X, et al. GAN Data augmentation methods in rock classification[J]. Appl Sci, 2023, 13(9): 5316.
|
[9] |
DU X, DING X, XI M, et al. A data augmentation method for motor imagery EEG signals based on DCGAN-GP network[J]. Brain Sci, 2024, 14(4): 375.
|
[10] |
HUANG H. Data augmentation by using gans and image transformation in facial emotion classification[C]// Journal of Physics: Conference Series. IOP Publishing, 2023, 2580(1): 012003.
|
[11] |
MAYANK B, TRIPTI M. Comparison of affine and DCGAN-based data augmentation techniques for chest X-ray classification[J]. Procedia Comput Sci, 2023, 218: 283-290.
|
[12] |
董家乐. 基于GAN的医学图像生成方法研究[D]. 郑州: 郑州大学, 2021.
|
[13] |
于明浩. 基于深度卷积对抗生成网络的肺结节分类和分割方法[D]. 北京: 北京化工大学, 2021.
|
[14] |
牟峙桦. 基于生成对抗网络的眼底图像生成方法研究[D]. 武汉: 华中科技大学, 2022.
|
[15] |
SASWATI S, SUSHRUTA M, BAIDYANATH P, et al. An augmented modulated deep learning based intelligent predictive model for brain tumor detection using GAN ensemble[J]. Sensors-Basel, 2023, 23(15): 6930.
|
[16] |
TIWARI A, HANNAN A S, PINNAMANENI R, et al. Optimized ensemble of hybrid RNN-GAN models for accurate and automated lung tumour detection from CT images[J]. Int J Adv Comput Sci Appl, 2023, 14(7): 621-631.
|
[17] |
赵建峰. 基于生成对抗网络的肝血管瘤和肝细胞癌的增强及检测方法的研究[D]. 济南: 山东师范大学, 2020.
|
[18] |
洪怡. 基于深度学习的脑肿瘤图像检测方法研究[D]. 长春: 长春工业大学, 2024.
|
[19] |
HU X Y, LIU Y, CHEN S, et al. Identification of acoustic neuroma and meningioma in the cerebellopontine angle region using Mask RCNN fusion attention mechanism[J]. Chinese J Magn Reson, 2023, 40(3): 293-306.
|
|
胡小洋, 刘颖, 陈淑, 等. 融合注意力机制Mask RCNN的桥小脑角区听神经瘤和脑膜瘤的识别研究[J]. 波谱学杂志, 2023, 40(3): 293-306.
doi: 10.11938/cjmr20223045
|
[20] |
LOU Y Z, LIU Y, JIANG H, et al. Research on classification algorithm for meningiomas and acoustic neuromas in the cerebellopontine angle region based on MRI and deep learning[J]. Chinese J Magn Reson, 2020, 37(3): 300-310.
|
|
娄云重, 刘颖, 江华, 等. 基于MRI和深度学习的桥小脑角区脑膜瘤与听神经瘤分类算法研究[J]. 波谱学杂志, 2020, 37(3): 300-310.
doi: 10.11938/cjmr20192753
|
[21] |
LIU Y, CHEN J C, HU X Y, et al. Classification and localization of meningiomas and acoustic neuromas in the cerebellopontine angle region based on Mask RCNN[J]. Chinese J Magn Reson, 2021, 38(1): 58-68.
|
|
刘颖, 陈静聪, 胡小洋, 等. 基于Mask RCNN的桥小脑角区脑膜瘤与听神经瘤分类定位研究[J]. 波谱学杂志, 2021, 38(1): 58-68.
doi: 10.11938/cjmr20202825
|
[22] |
WANG Z R, YANG J J, JIANG H N, et al. CNN training with twenty samples for crack detection via data augmentation[J]. Sensors, 2020, 20(17): 4849.
|
[23] |
龙程. 基于对抗网络的图像数据集扩充研究与实现[D]. 西安: 西安理工大学, 2020.
|
[24] |
KINGMA D P. Adam: A method for stochastic optimization[J]. arxiv preprint arxiv:1412.6980, 2014.
|
[25] |
WANG L, JI X H, YANG M, etc. Mineral image recognition based on data augmentation and ensemble learning[J]. Geoscience Frontiers, 2024, 31(4): 87-94.
|
|
王琳, 季晓慧, 杨眉, 等. 基于数据增强和集成学习的矿物图像识别[J]. 地学前缘, 2024, 31(4): 87-94.
doi: 10.13745/j.esf.sf.2024.5.6
|
[26] |
WUBINEH Z B, RUSIECKI A, HALAWA K. Classification of cervical cells from the pap smear image using the RESDCGAN data augmentation and ResNet50V2 with self-attention architecture[J]. Neural Comput Appl, 2024, 36: 1-15.
|
[27] |
ONAKPOJERUO P E, MUSTAPHA T M, OZSAHIN U D, et al. A comparative analysis of the novel conditional deep convolutional neural network model, using conditional deep convolutional generative adversarial network-generated synthetic and augmented brain tumor datasets for image classification[J]. Brain Sci, 2024, 14(6): 559.
|
[28] |
SARATH S, NAIR J J. Detection and classification of respiratory syndromes in original and modified DCGAN augmented neonatal infrared datasets[J]. Procedia Comput Sci, 2024, 233: 422-431.
|